

Data Centres Optimization for Energy-Efficient and
EnvironmentalLy Friendly INternet

Funding scheme: Specific Targeted Research Projects – STREP
Co-funded by the European Commission within the Seventh Framework Programme

Project no. 609140

Strategic objective: FP7-SMARTCITIES-2013 (ICT-2013.6.2)

Start date of project: October 1th, 2013 (36 months duration)

Deliverable D3.4

Energy Efficiency Policy Maker and Actuator
component (Implementation)

Due date: 31/01/2016

Submission date: 18/03/2016

Deliverable leader: NXW

Author list: Tommaso Zini (NXW), Andrea Gronchi (NXW), Matteo Pardi (NXW), Adrián
Roselló (I2CAT), Isart Canyameres (I2CAT), Amaia Legarrea (I2CAT), Artemis
Voulkidis (SYN)

Dissemination Level

 PU: Public

 PP: Restricted to other programme participants (including the Commission Services)

 RE: Restricted to a group specified by the consortium (including the Commission Services)

 CO: Confidential, only for members of the consortium (including the Commission Services)

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 2 of 83

List of Contributors

Participant Contributor

NXW Tommaso Zini, Andrea Gronchi, Matteo Pardi

i2CAT Adrián Roselló, Isart Canyameres, Amaia Legarrea

SYN Artemis Voulkidis

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 3 of 83

Amendment History

Version Date Partners Description/Comments

0.1 27/01/2016 NXW ToC Initial draft

0.2 12/02/2016 NXW, I2CAT. SYN Major contributions

0.3 28/02/2016 NXW Improvements to Policy Maker and Policy Repository
sections and overall editing revision

0.4 10/03/2016 NXW, I2CAT, SYN Improvements on section VM Priority Classifier and
Optimizer. Some minor revisions on the contents and
editing fixes

FF 17/03/2016 NXW, I2CAT, SYN Final review

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 4 of 83

Table of Contents

List of Contributors ... 2

Amendment History .. 3

Table of Contents .. 4

Figures Summary .. 6

Tables Summary .. 7

Abbreviations .. 8

Executive Summary ... 9

1. Introduction ... 10

2. Energy Efficiency Policy Maker and Actuator .. 11

2.1. Module description.. 11

2.1.1. Policy Maker .. 13

2.1.2. Policy Repository ... 15

2.1.3. Prediction Engine... 15

2.1.4. Optimizer ... 16

2.1.5. VM Priority Classifier ... 16

2.1.6. Policy Actuator .. 16

3. Implementation description .. 18

3.1. Policy Maker .. 18

3.1.1. Basic concepts ... 18

3.1.2. Policy Maker process loop ... 22

3.1.3. Module Dependencies .. 25

3.1.4. Service endpoints and data model .. 25

3.1.5. Deployment and installation ... 27

3.1.6. Testing the installation .. 28

3.2. Policy Repository ... 28

3.2.1. Basic concepts ... 28

3.2.2. Policy selection workflow .. 31

3.2.3. Module Dependencies .. 32

3.2.1. Service endpoints and data model .. 33

3.2.2. Deployment and installation ... 36

3.2.3. Testing the installation .. 36

3.3. Prediction Engine ... 37

3.3.1. Basic concepts ... 37

3.3.2. Module Dependencies .. 43

3.3.3. Deployment and installation ... 43

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 5 of 83

3.3.4. Testing the installation .. 51

3.3.5. Service endpoints and data model .. 52

3.4. Optimizer ... 55

3.4.1. Basic concepts ... 55

3.4.2. Module Dependencies .. 61

3.4.3. Deployment and installation ... 61

3.4.4. Testing the installation .. 64

3.4.5. Service endpoints and data model .. 65

3.5. VM Priority Classifier ... 69

3.6. Policy Actuator ... 70

3.6.1. Basic concepts ... 70

3.6.2. Module Dependencies .. 73

3.6.1. Service endpoints and data model .. 74

3.6.2. Deployment and installation ... 78

3.6.3. Testing the installation .. 79

3.6.4. Other module-specific subsections ... 80

4. Conclusions .. 82

References .. 83

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 6 of 83

Figures Summary

Figure 1-1 - DOLFIN overall architecture .. 10
Figure 2-1 - Energy Efficiency Policy Maker and Actuator architecture ... 12
Figure 2-2 - Policy Maker interactions .. 14
Figure 2-3 - Policy Actuator interaction diagram .. 17
Figure 3-1 - Policy Maker / Predictor Engine interaction.. 18
Figure 3-2 - Policy Maker SDC interactions ... 19
Figure 3-3 - Policy Maker / SLA Controller interaction ... 19
Figure 3-4 - Policy Maker / Optimizer interaction .. 21
Figure 3-5 - Process status loop .. 23
Figure 3-6 - policy selction .. 31
Figure 3-7 – Interactions of the Prediction Engine with the rest of the DOLFIN eCOP components. .. 39
Figure 3-8 - RESTful API exposed by the Prediction Engine .. 40
Figure 3-9 - Overview of the Prediction Engine online documentation ... 41
Figure 3-10 - The prediction engine default login page .. 42
Figure 3-11 - Determination of a particular prediction configuration .. 43
Figure 3-12 - Dolfin group creation through the administration page ... 48
Figure 3-13 - Prediction Engine user creation through the administration page 49
Figure 3-14 – The Optimizer interfacing and interconnection with other components 57
Figure 3-15 - The groups of service API endpoint exposed by the Optimizer 58
Figure 3-16 - Overview of the Requests tab of the Optimizer Dashboard ... 59
Figure 3-17 - Overview of the optimization request details ... 59
Figure 3-18 - Overview of the Plans tab of the Optimizer dashboard .. 60
Figure 3-19 - Details of an optimization plan .. 61
Figure 3-20 - Communication between Policy Actuator and DCO Brokers .. 71
Figure 3-21 - Policy Actuator Workflow .. 73

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 7 of 83

Tables Summary

Table 2-1 - Energy Efficiency Policy Maker and Actuator API summary ... 13
Table 3-1 - Event types by issuer .. 20
Table 3-2 - Event types reaction criteria ... 21
Table 3-3 - Policy plan to the Optimizer ... 22
Table 3-4 - Policy Maker: Predictor Engine API... 26
Table 3-5 - Policy Maker: Cross-DC POST API ... 26
Table 3-6 - Policy Maker: Cross-DC GET API ... 27
Table 3-7 - Policies constraints ... 30
Table 3-8 - Policy definition .. 30
Table 3-9 - Policy Repository: Inspect policies API.. 33
Table 3-10 - Policy Repository: Inspect constraints API .. 34
Table 3-11 - Policy Repository: enforce policy API ... 34
Table 3-12 - Policy Repository: enforce policy DELETE API ... 35
Table 3-13 - Policy Repository: query for policy scenario API .. 35
Table 3-14 - Predictor Engine measurement types .. 37
Table 3-15 - API services exposed by the Predictions group .. 53
Table 3-16: Data model of a predictions response ... 53
Table 3-17: Data model of a prediction object ... 53
Table 3-18 - API services exposed by the Plans group. ... 66
Table 3-19 – Data model of an optimization plan .. 66
Table 3-20 – Data model of an optimization request ... 67
Table 3-21 – Data model of a VM Migration object in the context of an optimization plan................ 67
Table 3-22 – Data model of a VM Action object in the context of an optimization plan 67
Table 3-23 – Data model of a Server Action object in the context of an optimization plan 67
Table 3-24 – Data model of an HVAC Action object in the context of an optimization plan 67
Table 3-25 – Data model of a Lighting Acton object in the context of an optimization plan 68
Table 3-26 - API services exposed by the Policies group. ... 68
Table 3-27 – API services exposed by the Requests group. .. 68
Table 3-28 – API service exposed by the Status group. .. 69
Table 3-29 –Data model of a Status object ... 69
Table 3-30 - Policy Actuator interfaces ... 74
Table 3-31 - Policy Actuator: VM migration API ... 75
Table 3-32 - Policy Actuator: VM shift API .. 75
Table 3-33 - Policy Actuator: DVFS set API ... 76
Table 3-34 - Policy Actuator: server hibernation API .. 76
Table 3-35 - Policy Actuator: server wakeup API .. 77
Table 3-36 - Policy Actuator: ancillary equipment hibernation API.. 77
Table 3-37 - Policy Actuator: ancillary equipment wakeup API .. 78
Table 3-38 - Policy Actuator: air conditioning API .. 78

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 8 of 83

Abbreviations

API Application Programming Interface

CORS Cross-Origin Resource Sharing

CXF Apache Open-source framework: https://cxf.apache.org/

DB Data Base

DC Data Centre

DCO Data Centre Optimization

DoW Description of Work

eCOP energy Consumption and Optimization Platform

HTTP HyperText Transfer Protocol

HW Hard Ware

ICT Information Communication Technologies

JSON JavaScript Object Notation

KPI Key Performance Indicator

MySQL https://www.mysql.com/

OS Operating System

RDBMS Relational Database Management System

REST Representational State Transfer

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SVR Support Vector Machine for Regression

ToC Table of Contents

URL Uniform Resource Locator

VM Virtual Machine

WP Work package

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 9 of 83

Executive Summary

The DOLFIN Energy Efficiency Policy Maker and Actuator represents a second group of elements that,
together with the ICT Performance and Energy Supervisor (detailed in the D3.3 [2]), composes the
eCOP DOLFIN subsystem, as objective in the context of the WP3.

This document is fed by the deliverables D2.1, D2.2, D3.1 previously submitted by the DOLFIN
consortium and provides a detailed description of each modules parts of the Energy Efficiency Policy
Maker and Actuator, with description of the interfaces and the interactions with other modules.
Moreover, highlights those parts requested some revision since the initial design (described in the
deliverable D3.1 [1]). In general, few changes were introduced that in any case were identified aiming
to simplify the overall architecture, focusing the works on the parts that where more significant for
the objectives in DOLFIN.

The document starts introducing a brief description of overall eCOP DOLFIN subsystem, due to the
nature of the Energy Efficiency Policy Maker and Actuator that represents a kind of crossroads
between various internal (within the eCOP subsystem) and external (SDC subsystem, see D4.3 [4] and
D4.4 [5]) entities.

The four main functionalities are explained in the following subsections where the Energy Efficiency
Policy Maker and Actuator is involved:

1. Performance and workload prediction.

2. Control, management and coordination of optimization activities policies based.

3. Build and processing of optimization plan

4. Actuation of optimization plan on the DC

Finally, the document provides the necessary information to build and test every system component
separately.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 10 of 83

1. Introduction

This document explains the implementation details of the Energy Efficiency Policy Maker & Actuator,
a group of elements that form the upper layer of the eCOP DOLFIN system. In this layer reside the
major intelligence of the DOLFIN architecture where decisions are taken and performed for the energy
optimization, based on pre-defined criteria and the input provided by other DOLFIN modules.

This deliverable focuses on the in-depth explanation of the development activities for the components
within the Energy Efficiency Policy Maker & Actuator group and represents a complement part of the
DOLFIN eCOP overall architecture, that was addressed by earlier deliverable D3.1 [1] .

For completeness, the description of the high level DOLFIN architecture is reported in Figure 1-1 as
starting point for detail description reported in the following subsections.

Figure 1-1 - DOLFIN overall architecture

A Git repository have been created to manage all DOLFIN project components, and it can be found at
http://stash.i2cat.net/projects/DOL. The access to this repository is secured through username and
password and hosted by i2CAT. In other to request access to this repo, one should send an email to
the following mailing address: amaia(.)legarrea(@)i2cat(.)net

http://stash.i2cat.net/projects/DOL

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 11 of 83

2. Energy Efficiency Policy Maker and Actuator

2.1. Module description

The Energy Efficiency Policy Maker & Actuator consists in specialized components each of which fulfils
a specific function:

 VM Priority Classifier: assesses the priority of VM streams based on their time criticality, their
resource consumption and the SLA of the customers or other entities.

 Prediction Engine: provides forecasts regarding the load expected in the near future, based on
the status of both the sole DC or as a part of a federated set of DOLFIN-enabled DCs.

 Policy Repository: maintains information regarding all possible policies available to conduct
the operation efficiency resource management.

 Policy Maker: schedules the activation of the policy enforcement, on the basis of the DC status
and the information provided by other modules. This module is responsible for the efficient
resource management and the acceptance or rejection of incoming requests at local or
synergetic DCs level. This is the key component of the chain.

 Optimizer: optimizes the allocation of existing and accepted load to the DC physical resources,
while adjusting to the operation imposed by the selected policy, also taking into account the
forecast of the Prediction Engine on the near future load and/or other information such as the
Smart Grid status by the Smart Grid Controller.

 Policy Actuator: is responsible for the implementation of the actions identified by the
Optimizer and translates the optimizer plan into commands to the DCO Hypervisor Manager
and/or the DCO Appliance Manager.

The diagram in Figure 2-1 provide a representation of the above components, presenting also the
main interactions between internal eCOP subsystem modules such as the interfaces to and from
external entities, which details are defined in the deliverables D4.3 [4] and D4.4 [5] . A reference
summary of these interfaces are reported in Table 2-1.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 12 of 83

Figure 2-1 - Energy Efficiency Policy Maker and Actuator architecture

Ref. ID API Name

1.4.1 Policy Plan Submit

1.4.5 Request metric / measure

1.4.6 VM Migration

1.4.7 VM Status Change

1.4.8 Consumption Trend Inquiry

1.4.9 Consumption Energy Price

1.4.10 SLA Downgrade Plan

1.4.11 Cross boundary Inter-DC VM Migration (Inquiry)

1.4.12 Cross boundary Inter-DC VM Migration (Trigger)

1.4.13 Log notification

1.4.14 Load Predictions

1.4.15 VM priorities

1.4.16 Server Energy Classification

1.4.17 Server Energy Consumption

1.4.18 VM Allocation

1.4.19 VM_migrate

1.4.20 VM_shift

1.4.21 DVFS

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 13 of 83

1.4.22 Serv_term

1.4.23 Serv_oper

1.4.24 Ancil_term

1.4.25 Ancil_oper

1.4.26 Air_cond _temper

1.4.27 VM_relocate

Table 2-1 - Energy Efficiency Policy Maker and Actuator API summary

2.1.1. Policy Maker

The Energy Policy Maker & Actuator represents a central point in the DOLFIN architecture, where
decisions for the application of energy policies are taken. The logical functions of this component are
distributed over a subsets of specialized entities that implement both the policy decision and
enforcement.

Many actions applied by the Energy Policy Maker and Actuator require the interaction with external
components, such as:

 Smart Grid Controller; provide information related to energy prices.

 Cross-DC Workload Orchestrator; used to distribute workload on different DCs within the
federated DOLFIN environment.

 SLA Renegotiation Controller; used to coordinate and take policy decision based on the user
Service Level Agreement (SLA).

Dedicated APIs are implemented at the level of the internal entities of the Energy Policy Maker and
Actuator to ensure correctness in data exchange and proper activation control between various
components. The Figure 2-2 provides a high level description on the major interactions from the Policy
Maker to the surrounded DOLFIN components.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 14 of 83

Figure 2-2 - Policy Maker interactions

The communication between the Policy Maker and other modules is performed through REST APIs,
except for messages incoming from the SLA Renegotiation Controller, which are put in line in a
dedicated queue. This approach is needed to handle violation triggers that can be unexpected, they
could arrive in any moment, and they need to be treated with a priority in respect to other messages
(an agreement violation must be handled as soon as possible); so the communication model has to be
different than with other components.

In a typical behavior, the Policy Maker periodically receives updates from the Smart Grid Controller
(about energy prices), and from the Cross-DC Orchestrator about optimizations at Synergetic DC level,
or it is triggered by the SLA Renegotiation Controller or the Prediction Engine requesting a new policy
to be evaluated. Reacting to these triggers (if needed), the Policy Maker may:

 Reacts depending to the current set policy. The policy could force the Policy Maker to discard
specific triggers or define for each of them a different treatment priority.

 Chooses a new policy from the Policy Repository.

Then the Policy Maker sends a proper request to the Optimizer. Once the Optimizer has received data
from the Policy Maker, and it has calculated a plan to be actuated, it will send a notification to the
Policy Maker itself with details of that plan. It will be the Policy Maker which has to reply, indicating
to the Optimizer to apply that plan or to not proceed.

Elaborating on its role, the Energy Policy Maker and Actuator is set to:

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 15 of 83

 Apply a set of well-known criteria and evaluation patterns to optimize the DC energy
consumption (i.e. determining a set of operations to improve the DC energy efficiency).

 Produce a stream of requests which can be translated into actual actions by others DOLFIN
servant subsystems within a DC.

 Determine corrective actions taking each action trade-offs and cost into account.

 Reacts to SLA violations messages, coming from Renegotiation Controller module, in order to
be in compliance with agreements.

This last bullet point is an add-on for what described in document D3.1 [1] . It has become necessary
to make SLA Renegotiation Controller module able to send messages to the Policy Maker; every time
a violation of the agreement comes up, the SLA component triggers the Policy Maker to evaluate a
new policy, in order to restore conditions into the bounds imposed by the agreement itself.

2.1.2. Policy Repository

The Policy Repository maintains information regarding all possible policies, which can be picked and
translated into actions, to achieve different energy efficiency and resource management goals. That
is: what the system does in order to shift specific KPIs toward the value we want to achieve.

This repository registers a sets of well-defined criteria to respond to different scenarios as follow:

 The energy policy used internally by the eCOP functions. The Policy Maker queries the
repository for the available policies in order to extract the best policy. This selection is
performed using sets of predefined criteria based on inputs to the Policy Maker and its
knowledge of the DC status. It will be the Optimizer Engine module which will reacts selecting
proper algorithms based on policy information.

 Agreements for federated DCs workload distribution. VM requests arrive at the Policy Maker
through the Cross-DC Orchestrator, which provides basic functions of request pre-processing.
These operations, like filtering based on inter-DCs SLA agreement, would reject VM requests
from non-federated DCs or even provide a higher priority to load from high priority DCs. This
information, pertaining to the DC priority, characterizes also the VM priority, and is passed
through the Policy Maker to the VM Priority Classifier, if the VM request is accepted.

2.1.3. Prediction Engine

The Prediction Engine is the DOLFIN component responsible for providing predictions in the course of
performing predictive optimization in the single-DC operation context. Particularly, it is capable of
providing forecasting services for all supported (and actively measured) measurement types, based
on the theory of Support Vector Machines for Regression (SVR).

The Prediction Engine primarily interacts with the eCOP Monitoring DB and the associated Broker, the
DOLFIN Optimizer and the Policy Maker. In detail,

 The interaction with the eCOP Monitoring DB is needed for acquiring the supported
measurement types and their recent values.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 16 of 83

 The interaction with the Optimizer is needed in order to inform the optimizer about the
forecasted values of a particular metric (e.g. average CPU utilization of the DC) so that the
generated optimization plan also considers these forecasts, implementing predictive
optimization. This interaction is synchronous (upon request from the Optimizer).

 The interaction with the Policy Maker is needed to inform it about forecasted changes in the
near future that may affect the efficient DC operation. This interaction is asynchronous (the
Prediction Engine decides when to inform the Policy Maker).

2.1.4. Optimizer

The Optimizer is the DOLFIN component responsible for devising the actions that need to be taken in
order to achieve policy-based efficiency under a changing environment. The optimizer acts on the
basis of relevant Policy Maker calls, finally notifying the Policy Actuator about the actions that should
be implemented. In such a framework, the Optimizer interacts with the Policy Maker, the Policy
Actuator and, when needed, with the Prediction Engine. In detail:

 The interaction with the Policy Maker is needed in order to acquire the active policies that
outline the targets of the DC efficiency directives (e.g. absolute energy reduction,
maximization of RES usage or cost-optimization) and to acquire requests for devising new
optimization plans. This interaction is synchronous (upon request from the Policy Maker).

 The interaction with the Prediction Engine is needed in order to acquire predictions of various
DC/VMs metrics. These predictions are considered in the course of generating the
optimization plans.

 The interaction with the Policy Actuator is needed in order to inform the latter about the
actions that need to be taken in order to implement the devised optimization plans.

2.1.5. VM Priority Classifier

The VM Priority Classifier is responsible for aggregating SLA and measurements information of the
VMs in a consolidated manner, facilitating the optimization process with the provision of a ranked
resources (VMs) list, where the VM rank indicates the extent according to which the state of a VM can
be altered without compromising its SLA restrictions. The VM Priority Classifier primarily interacts with
the SLA Renegotiation controller in order to acquire the SLA states of the various VMs of the DC.

As this component has been integrated with the Optimizer (constituting a functional element of the
Optimizer rather than of the overall DOLFIN platform), its interactions with the various DOLFIN
components are not presented separately.

2.1.6. Policy Actuator

The Policy Actuator main objective is to translate the optimizer plan into commands that will be
executed by the DCO Hypervisor Manager and the DCO Appliance Manager as defined in D3.1 [1] .
The responsibilities of the Policy actuator remain untouched after the changes to the ICT Performance
and Energy Supervisor defined in deliverable D3.3 [2] .

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 17 of 83

In order to achieve such goal, the Policy Actuator has been designed as a single standalone component,
composed by different sub-modules and also different APIs for communications with others DOLFIN
elements:

 The Northbound REST API exposing methods for requesting modifications in the DOLFIN
system in terms of VMs location, VM state, air conditioning state and air conditioning
temperature. This API aims to be consumed by the Optimizer in order to address plans.

 The main module containing the logic used to translate the Optimizer plans into commands
that will be addressed to the DCO Hypervisor Manager and the DCO Appliance Manager.
Additionally, all executed actions are logged in eCOP DB.

 The Southbound API consuming remote services exposed by DCP Hypervisor Manager and
DCO Appliance Manager to perform actions, such as VM migration, VM state modification, air
conditioning state modification and air conditioning temperature configuration.

 A client for the eCOP DB, in order to log in it all actions performed by the Policy Actuator.

Figure 2-3 - Policy Actuator interaction diagram

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 18 of 83

3. Implementation description

3.1. Policy Maker

The Energy Policy Maker and Actuator module is a key component in the DOLFIN architecture. It is the
one responsible for the schedule activation of policy enforcement, in order to evaluate event triggers
coming from other modules (e.g. SmartGrid Controller, Prediction Engine), and translate these events
into a change of scenario.

It coordinates requests for the initiation of an optimization process (e.g. decides the acceptance or
rejection of incoming requests), based on evaluation patterns to optimize the DC energy consumption.

3.1.1. Basic concepts

The Policy Maker mode of operation could be broken down into two main levels:

 Intra-DC level: the module reacts to the changes being operated on the VMs, by assessing the
status of DC topology and metrics and provides a coordination point to activate internal
procedures based on policy criteria. In this context, the Policy Maker mainly reacts to external
trigger provided by the Predictor Engine module as in

 Figure 3-1 (see 2.1.3 and 3.3).

 Synergetic DC level: Policy Maker interacts with Cross-DC Orchestrator in order to start and
request load migration to federated DCs (Figure 3-2), or accept migration requests from other
DCs; it implements closed control loop to control and validate the optimization workflow. See
deliverable D4.4 [5] for more details on Cross-DC Orchestrator implementation model.

Figure 3-1 - Policy Maker / Predictor Engine interaction

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 19 of 83

Figure 3-2 - Policy Maker SDC interactions

Through the integration with the Smart Grid Controller (Figure 3-2), the Policy Maker is pushed to
adapt the operation of the DC to the energy policy, using the energy price provided by the Smart Grid
environment. In this context the Smart Grid module uses RESTFul API to send price changes in a form
of “absolute” energy costs. It is the responsibility of the Policy Maker to evaluate if this information is
used or not to reschedule internal policy actions.

Regardless of the origin of the external requests and triggers, the processes activated during the
optimization can influence, in a more or less accentuated manner, the quality of services offered to
the end customers. Through the concept of "Green SLA", DOLFIN proposes a mechanism of flexible
SLA, able to "tolerate" a service downgrade in favor of a saving in energy at the DC level. In this
scenario, the actions defined by the optimization algorithms can exploit this flexibility of SLA, going to
consciously reduce the customer's performance.

The SLA Renegotiation Control (see [5]) is the system component that deals with the treatment and
monitoring of SLA. The Policy Maker communicates directly with this module through a priority events
queue (based on framework RabbitMQ) in order to react quickly in case of critical events when an
agreement violation is underway that may cause excessive downgrade of user SLAs (Figure 3-3).

Figure 3-3 - Policy Maker / SLA Controller interaction

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 20 of 83

When the Policy Maker receives a new request from one of its triggers, it evaluates if it has to take
action or not. In the latter case, it returns in attendance of new signals; in the former one it looks for
a new possible optimization scenario, and retrieve new policy criteria from the Policy Repository
component so to proper instruct the components that are directly involved in the building of
optimization actions.

The Policy Maker has the task to react to such events adaptively. Ideally, if an event notification is
bound to alter the DC working environment and performances in a suboptimal way, the Policy Maker
should assemble and issue a new optimization run, and invoke the optimization process again.

In order to achieve this, an established set of possible event types is internally handled:

Event type Issued by

Request of inbound Cross-DC workload Cross-DC Orchestrator

Request to restrict grid power absorption Smart Grid Controller

Lifting of a previous grid power restriction Smart Grid Controller

Request to increase smart grid power contribution Smart Grid Controller

Lifting of a previous smart grid power contribution
request

Smart Grid Controller

Notification of predicted increasing change of the
PUE KPI

Prediction Engine

Notification of predicted decreasing change of the
PUE KPI

Prediction Engine

Notification of predicted increasing change of the
ERE KPI

Prediction Engine

Notification of predicted decreasing change of the
ERE KPI

Prediction Engine

Notification of predicted increasing change of the
CER KPI

Prediction Engine

Table 3-1 - Event types by issuer

The Policy Maker will change its internal status by factoring the effect of the notified events, and may
set certain reaction criteria to counter the effect of a specific event, depending on its type (see Table
3-2).

Event type Reaction criteria (target)

Request of inbound Cross-DC
workload

consolidate_local_servers: yes
push_for_xdc_outbound_migrations: no

Request to restrict grid power
absorption

consolidate_local_servers: yes
reduce_vm_performances: yes
push_for_xdc_outbound_migrations: yes
boost_green_energy_reuse: yes

Request to increase smart grid
power contribution

consolidate_local_servers: yes
reduce_vm_performances: yes
push_for_xdc_outbound_migrations: yes
boost_green_energy_reuse: no

Notification of predicted increasing
change of the PUE KPI

improve_kpi_pue: yes
accept_xdc_migrations: yes
reduce_vm_performances: no

Notification of predicted increasing
change of the ERE KPI

boost_green_energy_reuse: yes
improve_kpi_ere: yes
accept_xdc_migrations: no

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 21 of 83

Table 3-2 - Event types reaction criteria

The compound effect of the reaction criteria set in a certain moment, concur to the make-up of the
request made from the Policy Maker to the Policy Repository (see section 3.2 – Policy Repository).

These interactions make the Policy Maker to be able to adapt to different optimization scenarios, that
are linked to a sets of policies. At this point it is required to converge toward a new scenario, so the
selected policy must be transmitted to the Optimizer module.

Figure 3-4 - Policy Maker / Optimizer interaction

When the Policy Maker sends the request to perform a new optimization, the Optimizer calculates an
optimization plan, but it does not communicate it to the Policy Actuator. Instead, the Optimizer
returns (though a specific REST API) the plan to the Policy Maker, which, in turn, decides whether the
plan should be applied or not. In a synchronous way, the Policy Maker replies: if the response is
positive, it sends a message telling to proceed with the application of the plan, if it is negative, to not
proceed. In the latter case, the optimizer rejects the plan. In the former case, now the Optimizer
forwards the plan to the Policy Actuator.

Table 3-3 provides a summary description of information passed from Policy Maker to the Optimizer
and relation between optimization target and related constraints:

Target Description Valid constraints

energy Find the optimal in energy
consumption

 stop_vms |
preserve_performance

 no_xdc

cost Optimize the use of energy in relation
of energy price

 stop_vms |
preserve_performance

 no_xdc

performance Makes priority to the DC computation
performance

 free_cooling

Notification of predicted increasing
change of the CER KPI

accept_xdc_migrations: no
consolidate_local_servers: yes

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 22 of 83

sla Optimize and preserve the customer
SLAs

 <uuid>

Table 3-3 - Policy plan to the Optimizer

Where the constraints are described below:

 stop_vms; put VMs in stop/standby status

 preserve_performance; not downgrade the performance (is alternative to stop_vms)

 no_xdc; avoid cross-DC migration

 <uuid>; used only when target is “sla” and used for restore the SLA of specific VM as requested
by SLA Renegotiation Controller

 free_cooling; used only when target is “performance” and tells to maximize the usage of free
cooling

The JSON format of the message exchanged between the Policy Maker and the Optimizer, to indicate
the new targets and constraints for optimization is the subsequent:

{

 "target": "energy", // energy, cost, performance, sla

 "constraints"1:

 [{

 "stop_vms","preserve_performance","no_xdc","free_cooling","<uuid>"

 }]

}

Other JSON message formats with WP4 components (e.g. the Smart Grid Controller) will be fully
described in deliverables D4.3 and D4.4 [5] , relatives to that components.

3.1.2. Policy Maker process loop

The diagram in Figure 3-5 shows the Policy Maker process status loop, starting from the arrival of an
event trigger, describing the decisions it has to make based on input data, to choose a candidate
scenario regarding the supported policies.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 23 of 83

Figure 3-5 - Process status loop

The process is structured in a decision chain loop where each stage is responsible to perform and apply
a subsequence of actions: analysis, validation, filtering, evaluation and finally starts a communication
session with southbound modules involved in the optimization process (such as the Optimizer).
Following the process step outlined:

1. Startup initialization

Load Policy Maker configuration and activate the required interfaces to get inbound request from
other modules:

• Cross-DC Orchestrator

• Prediction Engine wakeup call

• Smart Grid Controller

2. Wait for event block

In general, the Policy Maker is supposed to expose callable servant JSON interfaces using well-defined
service endpoints. The wait block collects the requests arriving from these.

Moreover, the wait block can internally implement the mechanisms to integrate polling events. In this
case, the block implements a time schedule to periodically query updates from external resources.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 24 of 83

3. Pre-screening

In this stage the Policy Maker takes actions on the basis of three main factors:

1. the latest, relevant input events

2. the internal state of the policy processing loop (for example the Policy Maker could block new
request if there in another processing ongoing)

3. the information taken from the ICT Performance and Energy Supervisor subsystem

The screening of the events may result in dropping the inbound request and ignoring it, or schedule a
new action.

Example of processes in the Pre-screening step:

Cross DC

Input:

 inbound VM transfer request; should be contain information of the VM to be host
Process:

 Query the InfoDB to determine if inbound cross-DC transfers are currently acceptable

 Verify if the Cross-DC transfer would result in a conflict with some other active
constraint/limitation (such as limitations imposed by the Smart Grid Controller)

Smart Grid

Input:

 change energy price of +- X%
Process:

 Verify the availability of Cross-DC workload shifting

 Verify local energy production

 Verify prospective elision of other current constraints

4. Policy selection

The action produced in the pre-screening step is translated in a procedure to query the list of possible
policies. For each action, presumably, there is a one-to-many relationship with the policies, in this case
the policy selection could returns a prioritized ordered list of available policies that are evaluated in
the next step in the policy evaluator block.

5. Policy evaluator

In this step evaluates the prioritized list of policies, to try to make a screening of which policy is best
applied, considering the current status of the DC and other factors.

This stage is the final building block for the policy rule, where all needed parameters and constraints
are valorised.

6. Optimizer engagement

In this step the Policy Maker pass the control to the Optimizer module and stop to processing further
requests until the conclusion of optimization. The requests to the Optimizer will have the format of
JSON message as defined in subsection 3.1.4.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 25 of 83

In all cases, the Policy Maker will keep listening for inbound requests to handle during the optimization
process. It may opt to immediately react to high priority event (such as critical event form SLA
Renegotiation Controller), and this may result in a stop command sent to the Optimizer about a
previously ongoing optimization.

Request made by the Policy Maker can happen to be ineffective, not applicable for a number of
reasons, or plain wrong. It is a perfectly legal action for the Optimizer, to report back errors and
conditions of refusal about a specific run optimization run.

3.1.3. Module Dependencies

The Policy Maker are few strictly dependencies that provide a minimal set of functionalities needed
for running the module:

 Policy Repository; needed to initialize the process loop

 eCOP DB; to query useful information status used during the event evaluation

Regardless these dependencies, the work performed by the Policy Maker cannot be discerned without
the integration with the external modules which provide inbound requests:

 Cross-DC Orchestrator (1.4.12 in Fig. 2-1)

 Prediction Engine wakeup call (1.4.14 in Fig. 2-1)

 Smart Grid Controller interface (1.4.8, 1.4.9 in Fig. 2-1)

 SLA Renegotiation controller interface

The communication between the Policy Maker with external (WP4) components listed have been
achieved with RESTful APIs (described in section 3.1.4) except for the one with the SLA Renegotiation
Controller, which is handled by a RabbitMQ.

3.1.4. Service endpoints and data model

A list of main Policy Maker REST APIs follows, with a brief description.

 Prediction Engine interface

Description Receives a wakeup call from the Prediction
Engine about a suggested change in metrics

Endpoint Name /policy/steer/{measure}

Allowed Methods POST

Body Notifies old, predicted and deadline values of
the kpi specified in the endpoint

Provides response Yes

Response Parameters Status (“accepted” / “refused”), eta

Response code 200, 400

Requester Prediction Engine

Example {

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 26 of 83

 "old_value": 0,
 "expected_value": 0,
 "deadline": 0
}

Table 3-4 - Policy Maker: Predictor Engine API

 Cross-DC Orchestrator Interface

Description Handles a cross-DC preauthorization request for
an inbound workload migration

Endpoint Name /policy/xdc/inbound

Allowed Methods POST

Body Specifies origin and destination DCOs, and
describes assests

Provides response Yes

Response Parameters Status (“go_ahead”, “denied”), xdc_endpoint,
xdc_preauth_key

Response code 200, 400

Requester Cross-DC Orchestrator

Example {
 "origin_dco": "dco0",
 "dest_dco": "dco1",
 "assets": [{
 "type": "vm",
 "uuid": "0123",
 "specs": {
 "vcpus": 1,
 "ram_mbs": 1024,
 "compressed_size_mbs": 1024,
 "uncompressed_size_mbs": 2048,
 "logical_size_mbs": 2048
 }
 }]
}

Table 3-5 - Policy Maker: Cross-DC POST API

 Cross-DC Orchestrator Interface

Description Reports the status of the Cross-DC endpoint and
current availability for inbound requests

Endpoint Name /policy/xdc/inbound

Allowed Methods GET

Body Provides status of the endpoint

Provides response Yes

Response Parameters Status (“available”, “unavailable”)

Response code 200

Requester Cross-DC Orchestrator

Example {

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 27 of 83

 "status": "available",
 "dc": "dc1",
}

Table 3-6 - Policy Maker: Cross-DC GET API

3.1.5. Deployment and installation

Below you may find the installation instructions for Ubuntu systems. Please note that this installation
procedure has been verified on Ubuntu 14.04.x x86_64 systems.

Sources are available on a Git repository at:

http://stash.i2cat.net/scm/dol/ecop_policy_maker.git

Preparing system:

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get install git python3.4 python-pip python-dev build-essential

rabbitmq-server

Cloning Git repository for DOLFIN Utils modules:

$ git clone http://stash.i2cat.net/scm/dol/dolfin_utils.git

Installing module using PIP tool:

pip install .

Launching Policy Maker application:

$ python -m dolfin.pmaker.server

When launching the Policy Maker server some useful options are available:

 --debug -> enables better error reporting

 --logging=debug

 --server_port=<PORT_NUMBER>

 --server_addr=<SERVER_ADDRESS> -> use 0.0.0.0 to bind on all interfaces

http://stash.i2cat.net/scm/dol/ecop_policy_maker.git

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 28 of 83

3.1.6. Testing the installation

The server component should be running (by default) at port 8080 of your machine. You may test it
by issuing the following command to see if the documentation page is properly fetched:

$ curl locahost:8080/docs

Remember to satisfy prerequisites listed in previous paragraph:

 Git

 Python 3.4+

 RabbitMQ

 dolfin-utils python package (will be explicitly required during the install phase)

Dependencies are included in requirements.txt file.

3.2. Policy Repository

The Policy Repository maintains information regarding all possible policies available to conduct the
operation efficiency resource management.

This repository stores the energy policy used internally by the eCOP functions. The Policy Maker
queries this repository, looking for the available policies in order to extract the best policy subset (that
will be used later to determine the optimization logic to apply), according to the situation encountered.

The selection is performed using sets of criteria based on the inputs of the Policy Maker and its
knowledge of the DC status. An energy policy is then “translated” in algorithms by the Optimizer
Engine.

3.2.1. Basic concepts

There has to be a one-to-one relationship between the contents of the Policy Repository and the
strategies (algorithms) known by the Optimizer module. Policies have to be expressed in a form of
inputs which will clearly specify:

1. the objective (target) of the policy (its name / identifier).

2. A set of parametric constraints, affecting the behaviour of how the specific policy is planned
for implementation by the Optimizer. The constraints can, for example, state the total
deviation from the current status, which the system seeks to achieve, impose or deny cross-
DB cooperation.

All the information that characterize a policy are then re-processed and adapted by the Policy Maker
in a form suitable for the Optimizer. This second step of translation is needed to maintain a separation

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 29 of 83

between the policy definition and the policy actuation as represented, understood and used internally
by the Optimizer.

At the level of Policy Repository, the policy will refer to specific parameters which are globally available
for querying in the ECOP DB (es. DCPWR, HVACPWR, HVACflow, etc), stating the new value the system
wants to reach. These parameters will be direct measures or calculated KPIs. Moreover, the Policy
Repository is able to estimate the effect of the activation of each policy, in order to compare it with
the targets currently set (and required) by the Policy Maker.

Each policy in the Policy Repository is identified by a label, and has a number of constraints and
intended effects (Table 3-8). The Table 3-7 provides a representation of defined constraints used for
the policy definition:

Constraint name Intended effect Range of possible values

avoid_standbys Avoid noticeable (SLA infringing)
VM standbys

Yes / no / not set

no_xdc_inbound_migrations Reject any and all inbound cross-
DC workload migration requests

Yes / no / not set

dnm_free_air_cooling_boost Prevent initiation of intra-DC VM
migration to achieve better free
air cooling exploitation

Yes / no / not set

dnm_for_green_server_boost Prevent initiation of intra-DC VM
migration to achieve better
green server exploitation

Yes / no / not set

dnm_for_server_consolidation Prevent initiation of intra-DC VM
migration to achieve better
server consolidation

Yes / no / not set

do_not_stop_vms Prevent VM shutdowns or
suspensions

Yes / no / not set

preserve_vm_performances Prevent engaging in actions
which may degrade actual VM
performances (observe SLA
performance limits)

push_for_kpi_pue_target Take actions in order change the
PUE metric value towards the
wanted target

-100+100%/not set

push_for_kpi_ee_target Take actions in order change the
EE metric value towards the
wanted target

-100+100%/not set

push_for_kpi_cet_target Take actions in order change the
CET metric value towards the
wanted target

-100+100%/not set

push_for_kpi_apc_target Take actions in order change the
APC metric value towards the
wanted target

-100+100%/not set

push_for_kpi_apc_ren_target Take actions in order change the
APC REN metric value towards
the wanted target

-100+100%/not set

push_for_kpi_dci_target Take actions in order change the
DCI metric value towards the
wanted target

-100+100%/not set

push_for_kpi_ere_target Take actions in order change the
ERE metric value towards the
wanted target

-100+100%/not set

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 30 of 83

push_for_kpi_gridii_target Take actions in order change the
Grid II metric value towards the
wanted target

-100+100%/not set

push_for_xdc_outbound_migrations Try to offload work to federated
DCs

Yes / no / not set

Table 3-7 - Policies constraints

The internal setup of the Policy Repository allows any defined policy to have a number of consequent
effects associated to it. An example of the make-up of defined policies and correlated effects is:

Policy name Effects Constraints

Air cooling reuse Perform relocation of internal
VMs to better optimize the
utilization of free air cooling.

push_for_kpi_ere_target: <<0%
preserve_vm_performances: yes
do_not_stop_vms: yes

Local only apply the optimization only to
local VMs, and within the DC
boundary

no_xdc_inbound_migrations: yes
push_for_xdc_outbound_migrations: no
push_for_kpi_pue_target: <<0%

Receive XDC workload local DC will accept requests
form federated DCs
inconditionally

preserve_vm_performances: yes
do_not_stop_vms: yes
avoid_standbys: yes
push_for_kpi_pue_target: <<0%

Table 3-8 - Policy definition

Upon request, the Policy Repository evaluates the set of targets passed from the Policy Maker with
the intended effects of every defined policy. Each target will yield a score (which can be negative if
the effect of a policy is counter-productive) and will concur in assigning a fitting value to each policy.

By iterating the evaluation algorithm upon all targets, for all constraints for all the defined policies,
the Policy Repository is then able to rank its defined policies and select the best fit for the present set
of targets. An answer is sent to the Policy Maker, with the resulting selected policy and its associated
constraints. In the section 3.2.2 an overview to the workflow is provided, describing the procedure
used internally for policy selection.

Then the Policy Maker is in charge of the right policy translation to produce a proper formatted
message used to communicate with the Optimizer (see section 3.1.4 for API description).

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 31 of 83

3.2.2. Policy selection workflow

Figure 3-6 - policy selction

The process structure is a decision chain loop, where each stage is responsible to perform and apply a
subsequence of actions: analysis and evaluation. Finally, the module replies to the caller (the Policy
Maker) the results of the requested operation. Following the process step outlined:

1. Startup initialization

Load Policy Repository configuration and activate the required interfaces to get inbound request from
Policy Maker

2. Wait for event block

The Policy Repository is supposed to expose callable servant JSON interfaces using well-defined
service endpoints. The wait block collects the requests arriving from these.

3. Pre-screening

In this stage the Policy Repository takes actions on the basis of the endpoint called from the Policy
Maker:

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 32 of 83

a. policies; the Policy Maker is requesting the list of the policies currently active

b. enforce; the Policy Maker is forcing the Policy Repository to get a specific policy, no matter
what, or is undoing a previous policy enforcement

c. query; the Policy Maker instructs the Repository about a specific scenario requirement, so
that the repository engine can measure the effectiveness of the active policies and suggest
the best one to be applied

So, the screening of the events may result in different actions the Policy Repository have to take during
its chain loop.

4. Event Processor

The action produced in the pre-screening step is translated in a different procedure to for each action;
with simpler or more complex actions based on the flow to follow.

a. Policies

The Policy Repository is polled to return a listing of all managed policies; so it returns a
message to the Policy maker with a plain list of these elements. Then, the process loop returns
to the wait for event block.

b. Enforce

The Policy Repository exposes two endpoints: to make caller (so the Policy Maker) able to
force a specified policy or to undo a previous enforce request.

In the latter case the Repository makes the named policy not to be enforced anymore, undoing
a previous command sent to the module. So the Policy Repository could restore its behaviour
to a standard one, not affected from an outside already made decision. Then it returns to the
wait for event block.

In the former case, instead, it replies to the Policy Maker the constraints of the forced policy,
like it was the result of the policy selection. Then it could return to the wait for event block.

c. Query

The Policy Repository receives a request from the Policy Maker with the intended effects of
every defined policy, in order to evaluate the set of targets. This could be considered as the
standard behaviour of the Policy Repository inside the Policy Maker and Actuator module. So,
each target evaluated from the process, will yield a score (which can be negative if the effect
of a policy is counter-productive) and will concur in assigning a fitting value to each policy. By
iterating the evaluation algorithm upon all targets, for all constraints for all the defined
policies, the Policy Repository is then able to rank its defined policies and select the best fit
for the present set of targets. At this point it replies to the Policy Maker, with the resulting
selected policy and its associated constraints; then the process loop returns to the wait for
event block.

3.2.3. Module Dependencies

The Policy Repository module interacts directly with the Policy Maker component, which have been
described in previous chapter. No other directly dependencies are defined and needed to run the

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 33 of 83

Policy Repository. In any case the Policy Repository is to be consider required components of the
DOLFIN architecture, due to this “leads” the decision taken at the level of the Policy Maker.

3.2.1. Service endpoints and data model

A list of main Policy Repository REST APIs follows.

 Inspect

Description Obtain the list of currently active policies

Endpoint Name /policies

Allowed Methods GET

Body None

Provides response Yes

Response Parameters Name, Description, IsActive, IsEnforced,
ConflictsWith, Constraints

Response code 200

Requester Policy Maker

Example {
 "name": "policy_01",
 "descr": "description",
 "is_active": true,
 "is_enforced": true,
 "conflicts_with": [],
 "constraints": [{
 "name": "constraint_01",
 "descr": "constraint_description",
 "value_type": "true",
 "supported": true
 }]
}

Table 3-9 - Policy Repository: Inspect policies API

 Inspect

Description Obtain the list of currently enforceable
constraints

Endpoint Name /contraints

Allowed Methods GET

Body None

Provides response Yes

Response Parameters Name, Description, ValueType, Supported

Response code 200,

Requester Policy Maker

Example {
 "name": "constraint_01",
 "descr": "description",
 "value_type": "true",

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 34 of 83

 "supported": true
 }

Table 3-10 - Policy Repository: Inspect constraints API

 Enforce

Description Force the application of a specific policy, no
matter what

Endpoint Name /enforce/{policy_name}

Allowed Methods POST

Body None

Provides response Yes

Response Parameters Name, Description, IsActive, IsEnforced,
ConflictsWith, Constraints

Response code 200, 404

Requester Policy Maker

Example {
 "name": "policy_01",
 "descr": "description",
 "is_active": true,
 "is_enforced": true,
 "conflicts_with": [],
 "constraints": [{
 "name": "constraint_01",
 "descr": "constraint_description",
 "value_type": "true",
 "supported": true
 }]
}

Table 3-11 - Policy Repository: enforce policy API

 Enforce

Description Undoes the effects of a previous enforce request
(the named policy is now not being enforced)

Endpoint Name /enforce/{policy_name}

Allowed Methods DELETE

Body None

Provides response Yes

Response Parameters Name, Description, IsActive, IsEnforced,
ConflictsWith, Constraints

Response code 200

Requester Policy Maker

Example {
 "name": "policy_01",
 "descr": "description",
 "is_active": true,
 "is_enforced": true,

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 35 of 83

 "conflicts_with": [],
 "constraints": [{
 "name": "constraint_01",
 "descr": "constraint_description",
 "value_type": "true",
 "supported": true
 }]
}

Table 3-12 - Policy Repository: enforce policy DELETE API

 Query

Description Instruct the repository about a specific scenario
requirement, so that the repository engine can
measure the effectiveness of the active policies and
suggest the best one to be applied

Endpoint Name /query

Allowed Methods POST

Body {
 "push_for_xdc_outbound_migrations": true,
 "reduce_vm_performances": true,
 "reduce_vm_performances_sla_infringing": true,
 "consolidate_local_servers": true,
 "boost_green_energy_reuse": true,
 "improve_kpi_ere": true,
 "improve_kpi_pue": true,
 "accept_xdc_migrations": true
}

Provides response Yes

Response Parameters Name, Description, IsActive, IsEnforced,
ConflictsWith, Constraints

Response code 200

Requester Policy Maker

Example {
 "name": "policy_01",
 "descr": "description",
 "is_active": true,
 "is_enforced": true,
 "conflicts_with": [],
 "constraints": [{
 "name": "constraint_01",
 "descr": "constraint_description",
 "value_type": "true",
 "supported": true
 }]
}

Table 3-13 - Policy Repository: query for policy scenario API

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 36 of 83

3.2.2. Deployment and installation

Below you may find the installation instructions for Ubuntu systems. Please note that this installation
procedure has been verified on Ubuntu 14.04.x x86_64 systems.

Sources are available on a Git repository at:

http://stash.i2cat.net/scm/dol/ecop_policy_repository.git

Preparing system:

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get install git python3.4 python-pip python-dev build-essential

Cloning Git repository for DOLFIN Utils modules:

$ git clone http://stash.i2cat.net/scm/dol/dolfin_utils.git

Installing module using PIP tool:

pip install .

Launching Policy Repository server:

$ python -m dolfin.policies.server

When launching the Policy Repository server some useful options are available:

 --debug -> enables better error reporting

 --logging=debug

 --server_port=<PORT_NUMBER>

 --server_addr=<SERVER_ADDRESS> -> use 0.0.0.0 to bind on all interfaces

3.2.3. Testing the installation

The server component should be running (by default) at port 8082 of your machine. You may test it
by issuing the following command to see if the documentation page is properly fetched:

$ curl locahost:8082/docs

http://stash.i2cat.net/scm/dol/ecop_policy_repository.git

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 37 of 83

Remember to satisfy prerequisites listed in previous paragraph:

 Git

 Python 3.4+

 dolfin-utils python package (will be explicitly required during the install phase)

Dependencies are included in requirements.txt file.

3.3. Prediction Engine

The Prediction Engine is responsible for offering prediction services over the sets of data monitored
by eCOP, either raw (e.g. average CPU load, RAM utilization or energy consumption) or calculated (e.g.
metrics calculated from the eCOP KPI Engine).

To implement the predictions, the Prediction Engine bases its operation on the well-established
Support Vector Machines theory, particularly applied for Regression, namely SVR. The prediction
processes may run either synchronously (upon request from another entity or component) or
asynchronously (e.g. every 5 minutes). When asynchronously invoked, the Prediction Engine
calculates the underlying model error and, if higher than a configurable lower threshold, it notifies the
Policy Maker to inform it about urgent changes in the expected DC behaviour.

3.3.1. Basic concepts

The prediction engine has been developed to provide forecasts for all measurement types and DC
infrastructure resources that are supported by the eCOP Monitor DB. Measurement types supported
by the eCOP Monitor DB and, hence, by the Prediction Engine, are shown in the following table.

calculated disk.read.requests energy

compute.node.cpu.frequency disk.read.requests.rate hvac.air_volume

compute.node.cpu.percent disk.write.bytes hvac.heat_transfer

cpu_util disk.write.bytes.rate hvac.temperature_drop

disk.read.bytes disk.write.requests memory

disk.read.bytes.rate disk.write.requests.rate memory.usage

network.incoming.bytes network.incoming.bytes.rate network.outgoing.bytes

network.outgoing.bytes.rate power temperature

Table 3-14 - Predictor Engine measurement types

The Prediction Engine features an auto-discovery mechanism to create models of measured data,
without necessitating explicit configuration. Every night, the Prediction Engine polls the eCOP DB
Broker for all measurement types and resources (e.g. servers, VMs, racks etc.) and gets the relative

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 38 of 83

measurements, spanning the last 14 days1. Then, a training model based on Support Vector Machines
for Regression (SVR) is applied over the complete set of acquired data in order to get an accurate
representation of their trends, after combining them to meaningful tuples of type [resource,
measurement_type]; as an example, supposing that for a specific physical server there exist
measurements related to energy consumption and CPU utilization only, the Prediction Engine will
generate two models, one pertaining to the CPU utilization of the server and one related to its energy
consumption. Following this approach, the Prediction Engine is able to provide information for a vast
number of target [resource, measurement_type] forecasting tuples. The resulted models are, next,
stored in appropriate directory and file hierarchies so that predictions can be acquired almost instantly,
without having to re-train the Prediction Engine. The parameters of the SVR machines are selected
after employing parameter space exploration and cross-validation, to extract the parameter values
that minimize the prediction error, i.e. present the best fit for the provided input values. In any case,
the kernel is statically set to Radius Basis Function (RBF). The directory structure used for storing the
models is, by default, following the following convention:

/opt/ecop_prediction_engine/api/oracle/<measurement_type>/<resource>/<resou

rce_id>, e.g.:

ubuntu@dolfin-dev:~$ tree -L 3 /opt/ecop_prediction_engine/api/oracle/

. . .

└── temperature

 ├── rack

 │ ├── 1

 │ ├── 2

 │ ├── 3

 │ └── 4

 ├── room

 │ ├── 1

 │ ├── 2

 │ └── 3

 ├── server

 │ ├── SN-1

 │ ├── SN-2

 │ ├── SN-3

 │ ├── SN-4

 │ ├── SN-5

 │ └── SN-6

 └── vm

 ├── test_uuid

 ├── test_uuid_1

 ├── test_uuid_2

 ├── test_uuid_3

 ├── test_uuid_4

 ├── test_uuid_5

 ├── uuid_test_6

 ├── uuid_test_7

 ├── uuid_test_8

 └── uuid_test_9

. . .

1 The limited span is intended because the actual data already acquired do not span more than a year, hence
capturing seasonality at yearly levels is not possible. When the acquired data span more than 12 months, the
learning procedure of the Prediction Engine will be slightly altered to consider all available data, over-weighting
most recent ones.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 39 of 83

Evidently, as not all measurement types are applicable to all resources (e.g. a VM cannot be measured
in terms of temperature), the relevant directories are empty; the Prediction Engine only creates
models for the tuples [measurement_type, resource, resource_id] that are metered.

Apart from SVR, we also experimented with Neural Networks and various time series analysis models
such as the ARMA, ARMAX and ARIMA models. The choice of SVR in favour of the rest of evaluated
techniques was made because SVR exhibited satisfactory performance in terms of both accuracy using
only limited sets of data and speed of forecasting procedures. Indicatively, the prediction of the
expected power demand of a single rack for four hours in the future (starting from the time of the
request) and quantized in timeframes of five (5) minutes (producing 48 prediction values in total) takes
approximately 55ms (including network transfer time).

The Prediction Engine features two modes of operation, an interactive and an automated one,
depending on whether the prediction request was performed by another component (e.g. the Policy
Maker) or the Prediction Engine itself, respectively.

eCOP Monitoring

DB

e
C

O
P

 M
o

n
it

o
ri

n
g

D
B

 B
ro

k
e
r

Prediction Engine

Policy Maker

Optimizer

Figure 3-7 – Interactions of the Prediction Engine with the rest of the DOLFIN eCOP components.

As far as the automated operation mode of the Prediction Engine is concerned, a periodical task is
activated every five (5) minutes that checks the hourly forecasts of the prediction engine and
correlates them with the actual relevant measurements acquired over the last hour (prior each
request, in a windowed mode) by the eCOP Monitor DB. If the relative difference between the two
time-series is larger than 15%, then the Prediction Engine notifies the Policy Maker of the event.

Regarding the interactive Prediction Engine mode, following the paradigm of the eCOP Monitor DB,
the core functionality is exposed via a RESTful web service exposing 7 application-oriented endpoints,
supported by 26 administration-oriented ones. Further, all APIs are secured against unauthorized
access through the employment of time-expiring authentication and authorization tokens. Figure 3-8
presents the application-oriented API endpoints exposed by the RESTful interface of the Prediction
Engine. The software used for generating this online, dynamic documentation is Swagger2 together
with its associated web-interface, Swagger-UI3.

2 http://swagger.io/
3 http://swagger.io/swagger-ui/

http://swagger.io/
http://swagger.io/swagger-ui/

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 40 of 83

Figure 3-8 - RESTful API exposed by the Prediction Engine

As depicted in Figure 3-8 and with respect to the endpoints exposed by the Prediction Engine, two
main categories of API services are supported, accompanied by a service for Authentication and
Authorization services (exposed under the relative path /api/tokens/). The two main service classes
refer to predictions provisioning and predictions validation, detailed as follows:

 The on-demand predictions provisioning services (grouped under the relative path
/api/predict/) offer predictions for the various supported measurement types, over various
time frames featuring (optionally) various forecasting points intervals.

 The on-demand predictions validation services (grouped under the relative path
/api/validate/) offer validity services with respect to the derived predictions. In other words,
by using these services one can get a model-based prediction of a measurement type for a
given resource for a past period of time, compare it with the actual measurements and get
some insightful statistical information regarding the quality of the model-based prediction.
The validation is subjective as model updates happen regularly but not in real time; hence,
performing a prediction in the past (after the model has been created) is as valid as generating
a prediction for a time period in the future. The statistical measures supported by the
validation endpoints are the following: R2, Mean Square Error, Relative Mean Square Error
and Relative Standard Deviation.

Figure 3-9 presents an overview of the documentation of a single API service exposed by the Prediction
Engine. As can be easily observed, information about the purpose of the endpoint, the supported HTTP
method(s) and the various path parameters required for properly invoking the service are provided,
boxed with magenta colour; the type of the parameters and their description are also provided, as
depicted framed in a green box. Further implementation notes and guidelines of API Service usage are
provided through a dedicated section framed with a red box. Moreover, the details of the response
class provided by the service are given in the yellow box.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 41 of 83

Figure 3-9 - Overview of the Prediction Engine online documentation

Apart from the online documentation system detailing the exposed Prediction Engine API structure
and usage, the Prediction Engine also features a dashboard to offer a visualized reference of the
generated predictions and the validations of them. To visit the dashboard, one should navigate to the
URL http://<PREDICTION_ENGINE_IP>/dolfin/predictions/html/login/, unless otherwise configured
(see 3.3.3.2 for details on how to properly configure the login redirection URL).

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 42 of 83

Figure 3-10 - The prediction engine default login page

When logged in, the user is able to either instruct the prediction engine to generate a new prediction
for a certain (valid) [measurement_type, resource_type, resource_id] tuple by clicking on
the Predictions button of the navigation bar, or generate a validation of the existing models, by
pressing the Validations button. To ease the determination of a new resource identification tuple, the
dashboard features relevant, auto-updating dropdown menus, as depicted in Figure 3-10. A similar
view is available for the forecasts validation services, omitted for reasons of brevity.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 43 of 83

Figure 3-11 - Determination of a particular prediction configuration

3.3.2. Module Dependencies

As the Prediction Engine bases its operation on data retrieved through the eCOP Monitoring DB, the
latter constitutes the only functional dependency for its proper operation.

3.3.3. Deployment and installation

Next, the deployment and configuration steps of the Prediction Engine are detailed, assuming that it
is deployed on top of a Debian-based system. In particular, the following software dependencies steps
have been tested and validated using an Ubuntu 14.04.3 LTS OS. For installation in other OS’, the
installation steps might be different.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 44 of 83

First, one should install MySQL server, in order to enable the authentication and authorization services
of the component:

Update the system software

$ sudo apt-get update

$ sudo apt-get upgrade

Actually install MySQL

$ sudo apt-get install mysql-server

After having installed MySQL server, one needs to secure the DB installation:

$ sudo mysql_secure_installation

Next, the DB schema creation should take place by issuing the following commands:

$ mysql -uroot -p

 Enter password:

mysql> create schema predictions;

mysql> exit;

Next, the core software dependencies and the actual code of the Prediction Engine should be installed
as follows:

Update the system software

$ sudo apt-get update

$ sudo apt-get upgrade

Install necessary software dependencies

$ sudo apt-get install python-pip python-dev build-essential python-numpy

python-scipy python-matplotlib python-pandas python-sympy python-nose

python-django

$ sudo pip install arrow django-extensions PyYAML django-cors-headers

django-rest-swagger djangorestframework djangorestframework-xml

djangorestframework-yaml joblib nose requests

Get the eCOP Prediction Engine code

$ git clone

http://artemis_voulkidis@stash.i2cat.net/scm/dol/ecop_prediction_engine.git

Move the code to /opt

$ sudo mv ecop_prediction_engine/ /opt/ecop_prediction_engine

After the successful installation of all the software dependencies, the Prediction Engine should be
configured in order to connect to the eCOP Monitoring DB. All configuration options are located in the
file /opt/ecop_prediction_engine/predictions/settings.py. The list of options that
should be configured in order to get a valid instance of the Prediction Engine is documented in the
following paragraphs.

http://artemis_voulkidis@stash.i2cat.net/scm/dol/ecop_prediction_engine.git

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 45 of 83

3.3.3.1. Configuration of the DB connection

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.mysql',

 'NAME': 'predictions',

 'USER': 'root',

 'PASSWORD': '<password>',

 'HOST': 'localhost',

 'PORT': '3306'

 }

}

The DATABASES section of the Broker settings should be configured to use the DB installation
described in paragraph 3.3.3. If a username other than 'root' is used4, this username should be placed
instead of 'root'. Evidently, the password of the DB user should be entered instead of '<password>'. If
the Prediction Engine and the MySQL server are not running in the same server, then the HOST and
PORT options should be appropriately configured to match the configuration of the DB.

3.3.3.2. Configuration of the login redirect URL

LOGIN_REDIRECT_URL = '/dolfin/predictions/html/login/'

The LOGIN_REDIRECT_URL setting should be changed if the Prediction Engine is running under a
BASE URL path other than
http://<PREDICTION_ENGINE_HOSTNAME_OR_IP>/dolfin/predictions/. When using the
default configuration presented in this document, this setting should not be changed.

Indicatively, if the Prediction Engine is running under the base URL path
http://<PREDICTION_ENGINE_HOSTNAME_OR_IP>/, then the LOGIN_REDIRECT_URL setting
should be set to '/html/login/'.

3.3.3.3. Configuration of the static files URL

STATIC_URL = '/dolfin/predictions/static/'

The STATIC_URL setting should be changed if the Prediction Engine is running under a BASE URL path
other than http://<PREDICTION_ENGINE_HOSTNAME_OR_IP>/dolfin/predictions/. When
using the default configuration presented in this document, this setting should not be changed.

4 This is actually also the recommended way for accessing the DB contents.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 46 of 83

Indicatively, if the Prediction Engine is running under the base URL path
http://<PREDICTION_ENGINE_HOSTNAME_OR_IP>/, then the STATIC_URL setting should be set
to '/static/'.

3.3.3.4. Configuration of the SWAGGER online documentation module

'api_path': '/dolfin/predictions/',

'base_path': '/<PREDICTION_ENGINE_HOSTNAME_OR_IP>/dolfin/predictions/docs/',

These two settings should be changed if the Broker is running under a BASE URL path other than
http://<PREDICTION_ENGINE_HOSTNAME_OR_IP>/dolfin/predictions/. When using the
default configuration presented in this document, the two settings should not be changed.

Indicatively, if the Broker is running under the base URL path
http://<PREDICTION_ENGINE_HOSTNAME_OR_IP>/, then the two settings should be configured
as follows:

'api_path': '/',

'base_path': '<PREDICTION_ENGINE_HOSTNAME_OR_IP>/docs/',

3.3.3.5. Configure CORS headers

CORS_ORIGIN_ALLOW_ALL = True

CORS_ORIGIN_REGEX_WHITELIST = ('^(http?://)?192\.168\.1\.\d+\w*$',)

If one needs to configure the Prediction Engine to allow CORS, then the relative CORS headers should
be included in the responses of the Prediction Engine. In order to configure the respective Broker
behaviour, one should appropriately configure the above two settings5.

3.3.3.6. Integration with Apache server and configuration [optional, recommended]

In order to deploy the Prediction Engine with Apache and mod_wsgi, the following commands should
be issued:

Update the system software

sudo apt-get update

sudo apt-get upgrade

Actually install Apache and mod_wsgi

sudo apt-get install apache2 libapache2-mod-wsgi

5 For more information on how to configure CORS in Django, the interested reader is request to refer to
https://github.com/ottoyiu/django-cors-headers.

https://github.com/ottoyiu/django-cors-headers

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 47 of 83

After having installed the necessary software, the file /etc/apache2/sites-

enabled/predictions.conf should be created and, then, edited in order to let Apache know of
the Prediction Engine installation. The contents of the file should be as follows.

WSGIPassAuthorization On

WSGIScriptAlias /dolfin/predictions

/opt/ecop_prediction_engine/predictions/wsgi.py

Alias /dolfin/predictions/static/ /opt/ecop_prediction_engine/static/

<Directory /opt/ecop_prediction_engine/static>

 Require all granted

</Directory>

<Directory /opt/ecop_prediction_engine/predictions>

 <Files wsgi.py>

 Require all granted

 </Files>

</Directory>

Evidently, if the Prediction Engine should be configured to run in a base URL path, the
WSGIScriptAlias and the static Alias settings should change accordingly6.

3.3.3.7. Model Synchronization with the DB

After the successful configuration of the Prediction Engine software, the following commands should
be issued in order to synchronize the Prediction Engine authorization and authentication Models with
the DB.

Synchronize the DB with the Prediction Engine models for the

authentication and authorization services

Remember to create a superuser

$ sudo python manage.py syncdb

$ sudo python manage.py makemigrations

$ sudo python manage.py migrate

[Optional] Restart the http service if configured to run with Apache

$ sudo service apache2 restart

The Prediction Engine should now be ready for use.

6 For information on how to configure Apache and mod_wsgi to work with Django, the interested reader is
requested to refer to https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/modwsgi/.

https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/modwsgi/

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 48 of 83

3.3.3.8. Adding users and groups for using the Prediction Engine

With regard to the configuration part, it is assumed that a superuser has been created during the
synchronization of the Prediction Engine authentication and authorization models with the DB (see
previous paragraph). Then, one should visit from a browser the Prediction Engine administration page
at http://<BROKER_HOSTNAME_OR_IP>/dolfin/predictions/admin/, click the "Groups" link
and create a new group with the name 'dolfin' and choose all permissions starting with "app", as
depicted in Figure 3-12.

Figure 3-12 - Dolfin group creation through the administration page

Any user willing to use the Prediction Engine should belong to this group. To create a new Prediction
Engine user, navigate to the administration page, click on 'Users' and then 'Add User'. Upon creation
of the user, edit the user to add her into the 'dolfin' group as depicted in Figure 3-13.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 49 of 83

Figure 3-13 - Prediction Engine user creation through the administration page

3.3.3.9. Configuring the default Predictions interval and duration

DEFAULT_INTERVAL_IN_MIN = 1

DEFAULT_DURATION_IN_HOURS = 1

By changing these variables, one can specify the granularity and default timeframe of the predictions
generated by the Prediction Engine, unless otherwise specified by using the appropriate URL path
parameters when invoking the relevant API services. By default, the Prediction Engine produces
predictions with a duration of 1 hour, predicting the respective values for a time interval of 1 minute
(thus resulting in the generation of 60 predicted values).

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 50 of 83

3.3.3.10. Configuring the connection to the eCOP DB

BASE_ECOP_DB_API_URL = 'http://<ecop_base_url>/dolfin/db/api/'

The configuration of the eCOP DB URL is possible through properly adjusting the
BASE_ECOP_DB_API_URL setting.

3.3.3.11. Configuring the automated model updating process

In order to configure the automated model updating process, one needs to edit the relevant file
located in /opt/ecop_prediction_engine/model_updater.py. The relevant configuration
options are the following:

TRAINING_DATA_START_DATE = before(24*2*7)

TRAINING_DATA_END_DATE = now()

ORACLE_DIR = '/opt/predictions/api/oracle/'

token = '_a_token_'

First, the default duration of the time period to examine updating the models should be configured,
by properly setting the TRAINING_DATA_START_DATE and TRAINING_DATA_END_DATE settings.
The TRAINING_DATA_START_DATE directive should be set on an hours-base; by default, a time
period of 14 days is considered. If one wants to have another directory for storing the models, the
ORACLE_DIR setting should be appropriately set. Last, the token setting should be set to match a
unique token provided by the eCOP Monitoring DB authentication service (see Deliverable D3.3).

3.3.3.12. Configuring the Interaction with the Policy Maker

In order to configure the interaction of the Prediction Engine with the Policy Maker, one needs to edit
the relevant file located in /opt/ecop_prediction_engine/policy_maker_updater.py. The
configuration options are the following:

BASE_ECOP_DB_API_URL= 'http://<ecop_base_url>/dolfin/db/api/'

BASE_PREDICTION_ENGINE_URL='http://localhost/dolfin/predictions/api/'

BASE_POLICY_MAKER_URL='http://<policy_maker_url>/v1/policy/steer/kpi_pue'

MAXIMUM_ACCEPTABLE_DEVIATION = 0.1

First, the eCOP Monitoring DB URL should be determined, by setting the BASE_ECOP_DB_API_URL
directive. The same holds for setting the respective URLs for the Prediction Engine and the Policy
Maker, through the settings BASE_PREDICTION_ENGINE_URL and BASE_POLICY_MAKER_URL. Last,
the maximum acceptable deviation between the predictions of the Prediction Engine and the actual
measurements during the last hour can be set through the MAXIMUM_ACCEPTABLE_DEVIATION
setting; when a relative deviation larger than MAXIMUM_ACCEPTABLE_DEVIATION is detected under
the automated, asynchronous Prediction Engine mode, the Policy Maker is notified of this event.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 51 of 83

3.3.4. Testing the installation

There are three ways of testing the Prediction Engine operation:

1. Via command line,

2. Through the Prediction Engine online documentation system service

3. Through the Prediction Engine Dashboard

3.3.4.1. Testing via command line

For testing the Prediction Engine via command line, the following commands can be issued:

Install curl command

$ sudo apt install curl

$ curl -X POST -H "Content-Type: application/json" -d '{"username": "test","password":

"test"}' http://<PREDICTION_ENGINE_HOSTNAME>/dolfin/predictions/api/tokens/

Here comes the response with the token

{"token":"581e76b175a6b48c78bb39ee598284e7183affdb","created_at":"2016-02-

12T11:16:54.293112+00:00","expires_at":"2016-02-13T11:16:54.293112+00:00"}

Request a prediction of the power consumption of rack 1 of the DC, using

the token already acquired

$ curl -H "Authorization: Token 581e76b175a6b48c78bb39ee598284e7183affdb"

http://<PREDICTION_ENGINE_HOSTNAME>/dolfin/predictions/api/predict/power/rack/1/

No predictions have been made yet in a vanilla installation

{

 "start": "2016-02-12T11:18:06.094162Z",

 "end": "2016-02-12T12:18:06.094187Z",

 "type": "power",

 "resource": "rack",

 "resource_id": "3",

 "model_version": "20160212002249",

 "predictions": []

}

3.3.4.2. Testing via the online documentation system

In order to test the Prediction Engine installation and configuration assuming that the default
configuration presented in the previous paragraphs has been followed, one should visit the page
http://<prediction_engine_url_or_ip>:<port>/dolfin/predictions/docs which
constitutes the landing page of the online documentation module supporting the operation of the
Prediction Engine operation already depicted in Figure 3-9. From there, one can get an authentication
token by invoking the tokens API service and, then, query the Prediction Engine for generating a
prediction. Instructions on how to use the online documentation module can be found in the page of

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 52 of 83

Swagger-UI7 and in the deliverable D3.3, paragraph 3.3.4.1, where the online documentation system
is presented for the eCOP Monitoring DB.

3.3.4.3. Testing via the Prediction Engine Dashboard

To check the installation of the dashboard, one is required to log into the Prediction Engine Dashboard
login page defined in the main settings file as documented in 3.3.3.2. After successful login, the
dashboard should expose a view similar to the one presented in 3.3.1.

3.3.5. Service endpoints and data model

The Prediction Engine has been configured to offer services categorized into two main groups of
services together with the authentication service as follows:

1. Predictions

2. Validations

3. Tokens (Authentication and Authorization)

3.3.5.1. Predictions [/api/predict/]

The Predictions service provides predictions over defined resources and timeframes. The following
endpoints have been defined for this group:

HTTP

Method

API Service Endpoint URL Description

GET /api/predict/<type>/<resource>/

<id>/

Predicts the measurements of type <type>

of a resource of type <resource> with id

<id> over the next hour with interval of 1

minute.

GET /api/predict/<type>/<resource>/

<id>/<end>/

Predicts the measurements of type <type>

of a resource of type <resource> with id

<id> over the <end> hours with interval of

1 minute.

GET /api/predict/<type>/<resource>/

<id>/<start>/<end>/

Predicts the measurements of type <type>

of a resource of type <resource> with id

<id> starting from <start> and ending in

<end> with interval of 1 minute.

GET /api/predict/<type>/<resource>/

<id>/<start>/<end>/<interval>/

Predicts the measurements of type <type>

of a resource of type <resource> with id

<id> starting from <start> and ending in

7 Swagger UI webpage, http://swagger.io/swagger-ui/.

http://swagger.io/swagger-ui/

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 53 of 83

<end> with interval of <interval>

minutes.

Table 3-15 - API services exposed by the Predictions group

The data model of a prediction response is as follows:

Attribute Type Description

start String The start time of the prediction in ISO8601 format

end String The end time of the prediction in ISO8601 format

type String The type of the measurement (must be a valid

measurement_type name, see D3.3)

resource String The resource type (can be a vm, server, rack etc.)

resource_id String The id of the resource (can the uuid of a vm, the

serial_number of a server, the id of a lighting element

etc.)

model_version String The version of the models used, namely when was the

model used last updated, in a YYYmmDDHHMMSS

format.

predictions List<Prediction> The list of predicted values

Table 3-16: Data model of a predictions response

The data model of the Prediction class is detailed in the table below:

Attribute Type Description

time String The time of the predicted value in ISO8601 format

value Decimal The predicted value

Table 3-17: Data model of a prediction object

3.3.5.2. Validations [/api/validate/]

The Validations service provides validations of predictions over defined resources and timeframes.
The following endpoints have been defined for this group:

HTTP

Method

API Service Endpoint URL Description

GET /api/validate/<type>/<resource>

/<id>/<start>/

Validates the prediction of the

measurements of type <type> of a resource

of type <resource> with id <id> over the

<start> last hours with interval of 1

minute.

GET /api/validate/<type>/<resource>

/<id>/<start>/<end>/

Predicts the measurements of type <type>

of a resource of type <resource> with id

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 54 of 83

<id> starting from <start> and ending in

<end> with interval of 1 minute.

The data model of a validation response is as follows:

Attribute Type Description

start String The start time of the prediction validation in ISO8601

format

end String The end time of the prediction validation in ISO8601

format

type String The type of the measurement (must be a valid

measurement_type name, see D3.3)

resource String The resource type (can be a vm, server, rack etc.)

resource_id String The id of the resource (can the uuid of a vm, the

serial_number of a server, the id of a lighting element etc.)

r_squared Decimal The R2 value of the validated predictions

mse Decimal The Mean Square Error between the predictions and the

actual measurements

rmse Decimal The Relative Mean Square Error between the predictions

and the actual measurements

rsd Decimal The Relative Standard Deviation between the predictions

and the actual measurements

model_version String The version of the models used, namely when was the

model used last updated, in a YYYmmDDHHMMSS format.

data List<Validation> The list of validated predictions.

The data model of the Validation class is detailed in the table below:

Attribute Type Description

time String The time of the referenced validation in ISO8601 format

actual Decimal The actually measured value

predicted Decimal The predicted value

3.3.5.3. Authentication and Authorization [/api/tokens/]

The tokens endpoint is used for users to acquire authorization tokens to use for accessing the

Prediction Engine. The following API service endpoint has been configured for this endpoint:

HTTP

Method
API Service Endpoint URL Description

POST /api/tokens/ Get a new authorization token

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 55 of 83

The data model of entity to be posted in order to acquire a new token is structured as follows:

Attribute Type Description

username String The username of the user

password String The password of the user

The data model of a token object retrieved by the Prediction Engine is as follows:

Attribute Type Description

token String The authorization token

created_at String The date when the token was generated in ISO8601 format

expires_at String The date when the token seizes to be valid in ISO8601

format

The token should be used in every HTTP request performed against the Prediction Engine API service

endpoints as a header in the form:

Authorization: Token <token>

where <token> is the acquired token.

3.4. Optimizer

As its name suggest, the Optimizer is the DOLFIN eCOP component responsible for optimizing the
intra-DC state, based on the policy that dictates, each time, the proper DC operation. Based on the
active policy, the Optimizer is able to devise action plans either to minimize the energy consumption
of the DC, or increase its cost-efficiency. The devised action plans may refer to IT and non-IT
infrastructures management and include VM management (e.g. migration or relocation), Server
management (hibernate inactive servers when no significant demand for computing services is
predicted by the Prediction Engine), Lighting management (e.g. turn off lights in inactive DC rooms)
and HVAC management.

3.4.1. Basic concepts

Tightly coupled with and implementing the energy optimization part of the intra-DC optimization
processes of a DOLFIN-enabled DC, the Optimizer component aims at providing optimal plans for re-
allocating the DC resources (at both IT and non-IT levels) to reach the objectives (currently active policy)
set by the Policy Maker.

The Optimizer is a mostly passive component, waiting for optimization requests from the Policy Maker.
Upon receipt of a relevant request, the Optimizer acknowledges receipt and updates its status in order
to let the interested components know that an optimization plan is currently on the works. Next,
based on the currently active policy governing proper DC operation, the Optimizer asynchronously
serves the optimization request and produces a relevant optimization plan. The latter is forwarded to
the Policy Actuator in order to be executed. Simultaneously, the Optimizer changes its status to Idle

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 56 of 83

and notifies the Policy Maker that the particular optimization request has been served and a relevant
optimization plan has been sent to the Policy Actuator.

When requested to absolutely minimize the energy consumption of the DC without any restriction,
the Optimizer tries to find the optimal VM allocation to the physical servers of the DC so that the
number of idle server that can be finally switched off is maximized, simultaneously maximizing the
possible energy consumption merits acquired by the avoidance of their operation. The problem has
been modelled as a one dimension (1D) Bin-Packing one, considering RAM of the VMs and the physical
servers as the sizable dimension and the physical servers as bins.

As time is critical for proper and timely DC adaptation and it is not possible to acquire an analytical
solution to such problems in reasonable (polynomial) time (the generalized Bin-Packing problem is
known to be NP-Hard), we have developed two heuristics that are able to achieve near-optimal
allocations, without being too time consuming. Particularly, when the DC is under high load and an
optimization request for minimizing the energy consumption is received, the Optimizer performs a
simple Best Fit Decreasing (BFD) algorithm that is able to arrange the VMs in the operating servers in
a near-optimal way. Particularly, in the direction of employing the BFD the DC servers are indexed
based on their energy-efficiency, with energy-efficient servers being assigned a lower index.
Subsequently, the VMs are placed into physical servers in order of increasing index. As a result, energy-
efficient servers are assigned a higher priority and for instance servers of a Green Room are reserved
first, or servers of the same DC segment are reserved prior to remote DC servers in order to allow
remote DC servers to hibernate, providing substantial energy savings. Next, the VMs are sorted by
(RAM) size and are then placed in order of increasing index, first into the occupied physical servers of
lower available capacity and then, in case they do not fit into the occupied servers, or in case of a tie,
VMs are placed in order of increasing index into the lower indexed physical server they fit.

In the case a more drastic DC load re-organization is required (i.e. in the case an extreme DC energy
minimization is needed), a complementary solution employing Grouping Genetic Algorithms (GGAs)
has been implemented. In the context of the Optimizer, GGAs are seen as simple GAs where each gene
of a GAs’ chromosome corresponds to a tuple of elements corresponding to the VMs of each physical
server and the latter are the building blocks evolved by the employment of the GAs. This approach
alters all GA operators significantly; however, our approach outperforms the standalone GA
substantially when applied to grouping problems.

The use of GGA, initialized by BFD, for the optimal VM allocation allows for the consolidated allocation
of VMs at an intra-DC level as well as an inter-DC level, whenever a VM consolidation is imposed by
the Smart Grid operation. Thus, the distributed application of the above optimization algorithm on
DOLFIN DCs, when that is deemed necessary based on the SVR load predictions, could yield significant
energy savings as well as reliable Smart Grid operation.

In case an optimization request is performed when a non-trivial optimization policy is active (e.g.
optimize the DC performance in terms of cost, given some arbitrary constraints), the optimizer
attempts to map the active policy and the accompanying data to a linear convex optimization problem,
formulating the objective function as a minimization of either the energy cost or the absolute energy
consumption and appropriately handling the restrictions based on the policy ones, to conclude on a
simple, linear, convex optimization problem as in [6] and [7] . The problem is then solved by using well
known, open convex optimization libraries [8] . The VM Priority Classifier and the abstractions it
performs (to be briefly discussed in the following paragraphs) assists the optimization process by
abstracting part of the restrictions, also limiting the set of resources upon which the optimization
process will be applied; in this sense, the VM Priority Classifier acts as a catalyst, accelerating the
optimization process.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 57 of 83

The generic, high level architecture of the Optimizer is presented in Figure 3-14.

Policy Maker
Prediction

Engine

eCOP Monitoring

DB

e
C

O
P

 M
o

n
it

o
ri

n
g

D
B

 B
ro

k
e
r

V
M

 P
ri

o
ri

ty

C
la

ss
if
ie

r

DOLFIN Info DB

D
O

L
F
IN

 I
n

fo
 D

B

B
ro

k
e
r

Optimizer

Policy

Actuator

Figure 3-14 – The Optimizer interfacing and interconnection with other components

Evidently, in order to achieve its optimization cause, the Optimizer needs access to certain sets of data
originating from other components and stored in the eCOP Monitoring DB and the DOLFIN Info DB.
Upon receipt of an optimization request and on the basis of the active policy governing the
optimization process, the Optimizer identifies the datasets that are required in order to devise a new
optimization plan. These datasets reside in the eCOP Monitoring DB and are acquired via querying the
eCOP Monitoring DB Broker via the VM Priority Classifier. Further, the needed datasets may pertain
to monitoring (raw or calculated), or to ICT and non-ICT assets of the DC in hand (e.g. VMs, Servers,
HVAC equipment etc.). Apart from these data, the VM Priority Classifier queries the DOLFIN Info DB in
order to get information related to the SLAs that relate to VMs and Servers that will participate in the
optimization process 8 . Upon receipt of all this information, the VM Priority Classifier fuses and
aggregates it, limiting its dimensionality and transforming the heterogeneous types of data into
homogeneous, so that the optimization problem can be properly formulated as a linear convex
function.

It should be underlined that as the optimization processes can be time consuming, particularly in the
case of large DCs, the Optimizer software has been configured to perform the optimization processes
in a multi-threaded manner. This grants the Optimizer the ability to either simultaneously handle
multiple optimization requests, e.g. each one targeting at different sets of VMs, or complete an
optimization request faster compared to a single-threaded case (by default, a -configurable- number
of 4 threads have been considered for use by the Optimizer at any time).

As in the case of the eCOP Monitor DB and the Prediction Engine, the Optimizer functionality is
exposed via a RESTful web service exposing 10 application-oriented endpoints, supported by 26
administration-oriented ones. Again, all APIs are secured against unauthorized access through the
employment of time-expiring authentication and authorization tokens. The following Figure presents
the application-oriented group of API endpoints exposed by the RESTful interface of the Optimizer

8 Depending on the various constraints set by the active Optimization Policy, the Optimizer may exclude certain
ICT infrastructure from the optimization process, or only include a small subset of it.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 58 of 83

with the help of a relevant self-documentation web service. More details on the full range of service
API endpoints exposed by the Optimizer may be found at paragraph 3.4.5.

Figure 3-15 - The groups of service API endpoint exposed by the Optimizer

Details on how to use the online documentation system are omitted as they are documented at [9]
and at D3.3 and in the current document in paragraph 3.3.1.

Apart from the online documentation system and similar to the eCOP Monitoring DB and the
Prediction Engine, the Optimizer exposes a dashboard interface that allows DC owners and operators
to monitor the various optimization processes, the plans generated, set the policies that govern
efficient DC operation etc. The following figure depicts the web page where one can check the
optimization requests that have been received by the Optimizer.

9 http://swagger.io/swagger-ui/

http://swagger.io/swagger-ui/

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 59 of 83

Figure 3-16 - Overview of the Requests tab of the Optimizer Dashboard

As can be readily seen in Figure 3-16, through this page, one can overview the past optimization
requests, grouped by the sender of the Request the optimization and request status. Moreover, at the
end of the page, one is able to check the status of the Optimizer (namely whether it is working on an
optimization plan or not) and what was the id of the last request served. Clicking on the id of a request
will bring the user to a new page where details of the request are presented, including the time when
the request was received, the time that it was served (i.e. the time when a relevant optimization plan
was generated) and the id of the associated plan generated, as presented in the figure below with a
reference optimization request of id 29. Again, when clicking on the generated plan id (in this case 26),
the user is redirected to the details page for this particular optimization plan, presented later.

Figure 3-17 - Overview of the optimization request details

If the user clicks on the Plans tab, an overview of the generated plans is presented as depicted in
Figure 3-18.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 60 of 83

Figure 3-18 - Overview of the Plans tab of the Optimizer dashboard

Through this tab, one can check the IDs of the generated plans together with the respective requests
received, the policies that were used for each request and the plan generation time. If one clicks on
the id of a specific plan, he gets redirected to the plan details page, depicted in Figure 3-19. In this
view, the DC operators are able to check

1. the profit expected from the application of the specific optimization plan,
2. the algorithm that was used in order to acquire the plan,
3. the policy that was governing the DC operation at the time of the generation of the plan
4. the request that was issued that led to the generation of the particular optimization plan, and
5. The list of actions that are needed in order to implement the optimization plan. These actions

depend on the equipment registered in the eCOP Monitoring DB such as VMs, Servers,
Lighting systems and HVAC.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 61 of 83

Figure 3-19 - Details of an optimization plan

3.4.2. Module Dependencies

In the framework of getting the necessary data for devising an optimization plan, the Optimizer needs
to have access to a running instance of the eCOP Monitoring DB and the associated Broker. In a similar
context, the Optimizer needs to have access to predictions from the Prediction Engine. Moreover, in
order to get the SLA status of the various users and VMs, the Optimizer depends on a running instance
of the SLA Renegotiation Controller. Last, in order to materialize the devised optimization plans, the
Optimizer needs to have access to a running installation of the Policy Actuator.

As an optional (though practically hard) dependency, the Optimizer needs to have access to a Policy
Maker instance in order to acquire DC Management Policies and optimization requests.

3.4.3. Deployment and installation

Next, the deployment and configuration steps of the Optimizer are detailed, assuming that it is
deployed on top of a Debian-based system. In particular, the following software dependencies steps
have been tested and validated using an Ubuntu 14.04.3 LTS OS. For installation in other OS’, the
installation steps might be different.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 62 of 83

First, one should install MySQL server, in order to enable the authentication and authorization services
of the component:

Update the system software

$ sudo apt-get update

$ sudo apt-get upgrade

Actually install MySQL

$ sudo apt-get install mysql-server

After having installed MySQL server, one needs to secure the DB installation:

$ sudo mysql_secure_installation

Next, the DB schema creation should take place by issuing the following commands:

$ mysql -uroot -p

 Enter password:

mysql> create schema optimizer;

mysql> exit;

Next, the core software dependencies and the actual code of the Optimizer should be installed as
follows:

Update the system software

$ sudo apt-get update

$ sudo apt-get upgrade

Install necessary software dependencies

$ sudo apt-get install python-pip python-dev build-essential redis-server

$ sudo pip install -r requirements.txt

Get the Optimizer code

$ git clone

http://artemis_voulkidis@stash.i2cat.net/scm/dol/ecop_optimizer.git

Move the code to /opt

$ sudo mv ecop_optimizer/ /opt/ecop_optimizer

As a next step, the CELERY workers should be configured to run in a daemon mode, as documented in
[10]. After the successful installation of all the software dependencies, the Optimizer should be
configured in order to connect to the eCOP Monitoring DB. All configuration options are located in the
file /opt/ecop_optimizer/optimizer/settings.py.

The basic configuration of the Optimizer follows the initial 8 steps presented for the case of the
Prediction Engine (paragraphs 3.3.3.1 - 3.3.3.8), with the necessary paths and filenames adaptations,
adjusting the local filesystem paths from /opt/ecop_prediction_engine/predictions/ to
/opt/ecop_optimizer/optimizer/ and the web URLs from /api/predictions/ to

10 http://celery.readthedocs.org/en/latest/tutorials/daemonizing.html#daemonizing

http://artemis_voulkidis@stash.i2cat.net/scm/dol/ecop_optimizer.git
http://celery.readthedocs.org/en/latest/tutorials/daemonizing.html#daemonizing

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 63 of 83

/api/optimizer/. Also, the DB settings should change to point to the optimizer schema, rather
than the predictions one.

 The list of extra options that should be configured in order to get a valid instance of the Optimizer is
documented in the following paragraphs.

3.4.3.1. Configuring the CELERY workers

In order to enable asynchronous operation and decouple the Policy Maker requests from the core
optimization processes, the Optimizer dispatches its optimization tasks to different CELERY workers.
To configure the workers, one should create or edit the file /etc/default/celeryd as follows:

ubuntu@dolfin:~$ cat /etc/default/celeryd | grep ^[^#]

ENABLED="true"

CELERYD_NODES="w1 w2"

CELERYD_CHDIR="/opt/ecop_optimizer"

CELERYD_OPTS="--concurrency=2"

CELERY_CONFIG_MODULE="celeryconfig"

CELERYD_LOG_FILE="/var/log/celery/%n.log"

CELERYD_USER="celery"

CELERYD_GROUP="celery"

BROKER_URL="redis://localhost:6379/0"

CELERY_APP="optimizer"

This will instruct celery to use the REDIS instance on localhost at port 6379 (default), use two
concurrent workers for parallel execution and consider the optimizer base directory
(/opt/ecop_optimizer/) as CELERY home directory as well.

3.4.3.2. Configuring the interaction with the REDIS server and CELERY workers

Next, the core Optimizer infrastructure should be configured to use the REDIS server to dispatch the
optimization execution tasks to the various CELERY instances. This can be done by editing the
/opt/ecop_optimizer/optimizer/settings.py file as follows:

BROKER_URL = 'redis://localhost:6379'

CELERY_RESULT_BACKEND = 'redis://localhost:6379'

CELERY_ACCEPT_CONTENT = ['application/json']

CELERY_TASK_SERIALIZER = 'json'

CELERY_RESULT_SERIALIZER = 'json'

CELERY_TIMEZONE = 'UTC'

Note that the base configuration options again refer to appropriately connecting to REDIS.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 64 of 83

3.4.3.3. Configuring the interaction with the Policy Actuator

To enable proper communication with the Policy Actuator, the following setting should be configured
in the /opt/ecop_optimizer/optimizer/settings.py file:

POLICY_ACTUATOR_BASE_URL = 'http://84.88.40.69:9091/policyactuator'

3.4.3.4. Configuring the interaction with the Prediction Engine

To enable proper communication with the Prediction Engine, the following setting should be
configured in the /opt/ecop_optimizer/optimizer/settings.py file:

PREDICTION_ENGINE_BASE_URL =

'http://<PREDICTION_ENGINE_HOSTNAME_OR_IP>/dolfin/predictions/api/

3.4.3.5. Configuring the interaction with the Dolfin Info DB

To enable proper communication with the Prediction Engine, the following setting should be
configured in the /opt/ecop_optimizer/optimizer/settings.py file:

DOLFIN_INFO_DB_BASE_URL = 'http://<DOLFIN_INFO_DB_API_SERVICE_URL>/

3.4.4. Testing the installation

There are three ways of testing the Optimizer operation:

4. Via command line,

5. Through the Optimizer online documentation system service

6. Through the Optimizer Dashboard

3.4.4.1. Testing via command line

For testing the Optimizer via command line, the following commands can be issued:

Install curl command

$ sudo apt install curl

$ curl -X POST -H "Content-Type: application/json" -d '{"username": "test","password":

"test"}' http://<OPTIMIZER_HOSTNAME_OR_IP>/dolfin/optimizer/api/tokens/

Here comes the response with the token

{"token":"581e76b175a6b48c78bb39ee598284e7183affdb","created_at":"2016-02-

12T15:35:44.253258+00:00","expires_at":"2016-02-13T15:35:44.253258+00:00"}

Request all generated optimization plans, using the token acquired

$ curl -H "Authorization: Token 581e76b175a6b48c78bb39ee598284e7183affdb"

http://<OPTIMIZER_HOSTNAME_OR_IP>/dolfin/optimizer/api/plans/

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 65 of 83

No optimization plans have been produced yet in a vanilla installation

{

 "count": 0,

 "next": null,

 "previous": null,

 "results": []

}

3.4.4.2. Testing via the online documentation system

In order to test the Optimizer installation and configuration assuming that the default configuration
presented in the previous paragraphs has been followed, one should visit the page
http://<OPTIMIZER_HOSTNAME_OR_IP>/dolfin/optimizer/docs which constitutes the
landing page of the online documentation module supporting the operation of the Optimizer, already
depicted in Figure 3-15. From there, one can get an authentication token by invoking the tokens API
service and, then, query the Optimizer for generating a new optimization plan etc. Instructions on how
to use the online documentation module can be found in the page of Swagger-UI 11 and in the
deliverable D3.3, paragraph 3.3.4.1, where the online documentation system is presented for the
eCOP Monitoring DB.

3.4.4.3. Testing via the Optimizer Dashboard

To check the installation of the dashboard, one is required to log into the Optimizer Dashboard login
page. After successful login, the dashboard should expose a view similar to the one presented in 3.4.1.

3.4.5. Service endpoints and data model

The Optimizer has been configured to offer services categorized into two main groups of services
together with the authentication service as follows:

 Plans

 Policies

 Requests

 Status

 Tokens (Authentication and Authorization)

3.4.5.1. Plans (/api/plans/)

The Plans service provides information over the generated optimization plans devised by the
Optimizer. The following endpoints have been defined for this group:

11 Swagger UI webpage, http://swagger.io/swagger-ui/.

http://swagger.io/swagger-ui/

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 66 of 83

HTTP

Method

API Service Endpoint URL Description

GET /api/plans/ Retrieves all optimization plans devised by the

Optimizer.

GET /api/plans/<id> Retrieves the optimization plan characterised by

the id <id>

PUT /api/plans/<id> Updates the optimization plan characterised by

the id <id>

PATCH /api/plans/<id> Patches the optimization plan characterised by the

id <id>

DELETE /api/plans/<id> Deletes the optimization plan characterised by the

id <id>

GET /api/plans/by-request-

id/<id>

Retrieves the optimization plan that was

generated as a response to the optimization

request with id <id>

Table 3-18 - API services exposed by the Plans group.

The data model of a plan is as follows:

Attribute Type Description

id Integer The id of the generated plan

policy Policy The policy according to which the plan was devised

request Optimization

Request

The optimization request that drove the process of

generating the plan

algorithm String The algorithm used to generate the plan

algorithm_version String The version of the algorithm used

time String The ISO8601 representation of the time when the plan

was generated

expected_benefit Decimal The expected benefit from applying the optimization plan

vm_migrations List<VM

Migration>

The list of VM Migrations expected to happen for

implementing the particular optimization plan

vm_actions List<VM

Action>

The list of VM Actions expected to happen for

implementing the particular optimization plan

server_actions List<Server

Action>

The list of server actions expected to happen for

implementing the particular optimization plan

hvac_actions List<HVAC

Action>

The list of HVAC actions expected to happen for

implementing the particular optimization plan

lighting_actions List<Lighting

Action>

The list of lighting systems actions expected to happen

for implementing the particular optimization plan

Table 3-19 – Data model of an optimization plan

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 67 of 83

The data models of the entities included in the definition of the optimization plan data model are as
follows:

Attribute Type Description

id Integer The id of the optimization request

time String The ISO8601 representation of the time when the request was issued

target String The target of the optimization request (optional)

prediction String A prediction to guide the optimization procedure (optional, deprecated)

status String The status of the request. Can be either ‘RECV’ to determine that the request

was successfully received, ‘WIP’ to determine that an optimization plan is

being generated as a response to this request, or ‘DONE’ to indicate that an

optimization plan has been generated by the optimizer as a response to this

request. (optional)

Table 3-20 – Data model of an optimization request

Attribute Type Description

id Integer The id of the VM Migration

uuid String The UUID of the VM to migrate

host String The server (the serial number of it) hosting the VM.

target String The target server (serial number)

Table 3-21 – Data model of a VM Migration object in the context of an optimization plan

Attribute Type Description

id Integer The id of the VM Action

uuid String The UUID of the VM to act upon

action String The action to perform on the VM (e.g. SHUT-OFF)

Table 3-22 – Data model of a VM Action object in the context of an optimization plan

Attribute Type Description

id Integer The id of the Server Action

serial_number String The serial number of the server to act upon

action String The action to perform on the server (e.g. hibernate)

Table 3-23 – Data model of a Server Action object in the context of an optimization plan

Attribute Type Description

id Integer The id of the Server Action

cooling String The HVAC system to act upon

action String The action to perform on the cooling system (e.g.

hibernate)

Table 3-24 – Data model of an HVAC Action object in the context of an optimization plan

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 68 of 83

Attribute Type Description

id Integer The id of the Server Action

lighting_id String The id of the lighting system to act upon

state String The state of the lighting system to achieve

Table 3-25 – Data model of a Lighting Acton object in the context of an optimization plan

The Policy data model is described in §3.2.1

3.4.5.2. Policies [/api/policies]

The Policies service provides information over the supported DC policies governing the behaviour of
the Optimizer. The following endpoints have been defined for this group:

HTTP

Method

API Service Endpoint

URL

Description

GET /api/policies/ Retrieves all policies supported by the Optimizer.

GET /api/policies/<nam

e>/

Retrieves a supported policy based on its name.

DELETE /api/policies/<nam

e>/

Deletes a supported policy based on its name.

POST /api/policies/acti

ve/

Sets a certain policy as active

GET /api/policies/acti

ve/

Gets the active policy of the optimizer

Table 3-26 - API services exposed by the Policies group.

All APIs support the Policy data model described in §3.2.1.

3.4.5.3. Requests [/api/requests/]

The Requests service provides information about the optimization requests received and processed
by the Optimizer.

HTTP

Method

API Service Endpoint URL Description

GET /api/requests/ Retrieves all received optimization requests

POST /api/requests/ Creates a new optimization request

DELETE /api/requests/<id> Deletes an optimization request

GET /api/requests/by-

status/<status>

Retrieves the optimization plans that share a common

status identified by <status>.

Table 3-27 – API services exposed by the Requests group.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 69 of 83

All APIs support the Optimization Request data model documented in Table 3-20.

3.4.5.4. Status [/api/status/]

The Status service may be used to retrieve the status of the optimizer. A single API service endpoint
has been defined as documented in the following table:

HTTP Method API Service Endpoint URL Description

GET /api/status/ Gets the status of the Optimizer

Table 3-28 – API service exposed by the Status group.

The data model of a Status object is as follows:

Attribute Type Description

id Integer The id of the status (can be ignored)

status String The status of the Optimizer

since String The ISO8601 representation of the time until when the

Optimizer has this status

last_request Integer The id of the request that was last processed by the

Optimizer

Table 3-29 –Data model of a Status object

3.4.5.1. Authentication and Authorization [/api/tokens/]

This service endpoint follows the same service endpoint URLs and data model as the Prediction Engine
ones documented in §3.3.5.3.

3.5. VM Priority Classifier

The functionality of this component has been integrated into the Optimizer and is, hence, omitted in
this section.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 70 of 83

3.6. Policy Actuator

3.6.1. Basic concepts

The Policy Actuator has been implemented as a single module containing four different components.

a. Northbound API

The Northbound API is the entry point for all requests coming from the Optimizer. As explained in
2.1.6 of the present document, the Policy Actuator is exposed as a REST API, allowing an easy, light
communication with remote components.

The REST API has been built and published by a third-party library called Apache CXF, which is an open-
source-services framework providing mechanisms to easily build and develop web services using
frontend programming APIs, such as JAX-RS in this case. By adding annotations to the classes and
attributes to our model, the CXF automatically builds a REST API with the specifications described in
section 2.1.6. More specifically, publishing the web resources in the specified URL, validating the
format and content of the messages, and linking the REST resources to the classes of our module that
will manage and receive those requests. Hence, the REST API is also responsible for translating the
JSON messages to JAVA instances containing such information and vice-versa.

The base address of the northbound API can be easily and dynamically configured using the policy
actuator configuration file, provided in its code and, hence, in its deployment package.

b. eCOP DB client

The eCOP DB client is a REST client used to log all received requests into the eCOP DB component.
According to the eCOP DB API description defined in deliverable D3.1, the Policy Actuator implements
a complete client allowing the communication with this component of the DOLFIN System.

As the northbound API, client is built using open source library CXF, which also provides methods to
build Web Services clients. The Policy Actuator implements the JAVA representations of the messages
to be sent to or received from the eCOP DB. The classes and attributes taking part of it are annotated
with specific JAX-RS annotations, allowing CXF framework to automatically translate from JSON to
JAVA and vice versa. It also provides ways to inspect the server response, allowing the Policy Actuator
to handle errors in the communication and the message format. If the client launches any exception,
this would be treated by the Policy Actuator and logged into local log file.

As described in D3.2 [3] , the eCOP DB API is secured by a token-based authentication. Therefore, all
logging requests coming from Policy Actuator have to include a token for authentication and
authorization. In order to add such token to the headers of all messages addressed to the eCOP DB, a
CXF Interceptor has been implemented as part of the Policy Actuator. This Interceptor registers itself
as a handler of outgoing messages before they are sent to the eCOP DB server adding the token to the
message headers.

The remote address of the eCOP DB used to build the client can be easily and dynamically configured
using the Policy Actuator configuration file, provided as part of the deployment package. Given that
the eCOP DB requires an authentication token for all communications, this should be included in such
file as well.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 71 of 83

c. Southbound API

The southbound API is used by the Policy Actuator to communicate with the DCO Hypervisor Manager
and the DCO Appliance Manager. The communication between those components is done via JAVA
SPI (Service provider Interface). The SPI allows the developer to make extensible applications without
modifying the original base code of the Policy Actuator. The base code declares the specification of
the extensible service and other libraries can implement the interface without requiring modifications
to the original application.

In this case, the Policy Actuator defines the Service Interface, which contains a single method to
execute the actions that the Policy Actuator has translated from the Optimizer plan. It contains an
internal registry to access to all available implementations of the Service Interface. This is carried out
through the ServiceLoader, which is an SPI component responsible for searching and loading
implementations of a specific service. The only restriction is that they should be in Policy Actuators
classpath, so it forces the implementations to be in the same host and, of course, developed in same
language.

The DCO Hypervisor Manager and the DCO Appliance Manager contain a so-called Adaptor. The Policy
Actuator and DCO Broker communication is done through the adapters. Hence, these modules should
contain an implementation for the Service Interface and notify to the SPI that they contain
implementations for that interface. This is done by adding a specific file in JAR specifying which
interface they implement and which is the file implementing it inside the local JAR file.

Figure 3-20 - Communication between Policy Actuator and DCO Brokers

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 72 of 83

d. Policy Actuator core

The core module of the Policy Actuator acts as an orchestrator, making usage of the three components
described before. Each request addressed to Policy Actuator through the northbound API fulfils a
specific workflow:

1) The request is handled by CXF library and translated into JAVA classes with information stored
in their attributes. Each published REST resource is mapped to a method of a class instance,
which are the methods of the Policy Actuator core.

2) The Policy Actuator translates received request into actions (AKA. Commands) to be
performed by the DCO Hypervisor Manager and the DCO Appliance Manager.

3) The Policy Actuator core makes usage of the eCOP DB client to log the actions to be performed.

a. If server or protocol fails, error is logged into local log file.

4) Actions are sent to the DCO Hypervisor Manager and the DCO Appliance Manager through
the Southbound API.

a. If a communication or the remote component fails, an error is logged into local log
file.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 73 of 83

Figure 3-21 - Policy Actuator Workflow

3.6.2. Module Dependencies

The Policy Actuator module interacts with several components of the DOLFIN system in order to
receive plans, translate them into commands and send them to the proper modules.

Module Name Direction Motivation Protocol

Optimizer To Policy Actuator Optimizer defines a
plan to be executed
and it’s passed to
Policy Actuator, which
is responsible for the
plan execution.

REST

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 74 of 83

eCOP DB From Policy Actuator All actions to be
applied in order to
execute a plan are
stored into the eCOP
Database.

REST

DCO Hypervisor
Manager

From Policy Actuator Actions to execute a
plan are translated to
each specific DCO
Hypervisor Manager
so this can apply them.

Protocol determined
by DCO Hypervisor
Manager. REST in most
cases (e.g. OpenStack)

DCP Appliance
Manager

From Policy Actuator Actions to execute a
plan are translated to
each specific DCO
Appliance Manager so
this can apply them.

Protocol determined
by DCO Appliance
Manager. REST in most
cases.

Table 3-30 - Policy Actuator interfaces

No further direct dependencies exist between the Policy Actuator and the rest of DOLFIN’s
components.

3.6.1. Service endpoints and data model

As mentioned in previous paragraphs, the communication between the Optimizer and the Policy
Actuator is performed through REST APIs. Once the Optimizer has calculated a plan to be executed in
a specific DC managed by the DOLFIN system, it will send a notification to the Policy Actuator including
the actions that should be executed in order to apply that plan. This API is the entry point to the Policy
Actuator, and it allows to request:

 VM migration among servers.

 Delay VM instantiations to a specific time period.

 Modify operational state of a VM.

 Modify operational state of ancillary equipment.

 Modify operational temperature of air conditioning equipment.

In order to implement those, the API has been designed as described in following tables, this
information is new as compared to D3.1 [1] .

 VM migration

Description Used by Optimizer to request VM migration
among servers of same or different DCs.

Endpoint Name /vm/migrate

Allowed Methods PUT

Body List containing the ids of the VMs to be migrated
together with the id of the destination server.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 75 of 83

Provides response No

Response Parameters None

Response code 200

Requester Optimizer

Example {
 "vms":[
 {
 "vm_uuid":"vm1",
 "server_sn":"server2"
 },
 {
 "vm_uuid":"vm2",
 "server_sn":"server6"
 }
]
}

Table 3-31 - Policy Actuator: VM migration API

 VM shift

Description Used by Optimizer to request that a VM
instantiation gets postponed until a specific time
period.

Endpoint Name /vm/shift

Allowed Methods POST

Body List containing ids of the VMs which
instantiation should be postponed, together
with the specific time when the VM should be
instantiated. The expected format of the date is
“yyyy-MM-ddThh:mm:ssZ”

Provides response No

Response Parameters None

Response code 200

Requester Optimizer

Example {
 "vms":[
 {
 "vm_uuid":"vm1",
 "start_time":"2015-12-10T20:00:02Z"
 },
 {
 "vm_uuid":"vm2",
 "start_time":"2015-12-10T20:00:02Z"
 }
]
}

Table 3-32 - Policy Actuator: VM shift API

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 76 of 83

 DVFS

Description Used by Optimizer to request to scale down the
voltage and frequency of a specific server by a
given percentage.

Endpoint Name /server/dvfs

Allowed Methods PUT

Body List containing the serial numbers of the servers
which voltage and frequency should be scaled
down, together with the percentage to apply.

Provides response No

Response Parameters None

Response code 200

Requester Optimizer

Example {
 "dvfs":[
 {
 "server_sn":"server1",
 "scale":"40"
 },
 {
 "server_sn":"server2",
 "scale":"5"
 }
]
}

Table 3-33 - Policy Actuator: DVFS set API

 Server hibernation

Description Used by Optimizer to request that a specific
server enters into hibernation mode.

Endpoint Name /server/hibernate

Allowed Methods PUT

Body List containing the ids of the servers to
hibernate.

Provides response No

Response Parameters None

Response code 200

Requester Optimizer

Example {
 "servers":[
 "server1",
 "server2"
]
}

Table 3-34 - Policy Actuator: server hibernation API

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 77 of 83

 Server wakeup

Description Used by Optimizer to request that a specific
server goes back into operational mode.

Endpoint Name /server/wakeup

Allowed Methods PUT

Body List containing the ids of the servers to wake up.

Provides response No

Response Parameters None

Response code 200

Requester Optimizer

Example {
 "servers":[
 "server1",
 "server2"
]
}

Table 3-35 - Policy Actuator: server wakeup API

 Ancillary equipment hibernation

Description Used by Optimizer to request that a specific
ancillary equipment enters into hibernation
mode.

Endpoint Name /airconditioning/hibernate

Allowed Methods PUT

Body List with the ids of the ancillary equipment
which should enter into hibernation mode.

Provides response No

Response Parameters None

Response code 200

Requester Optimizer

Example {
 "air_conditioning":[
 "air_conditioning_1",
 "air_conditioning_2"
]
}

Table 3-36 - Policy Actuator: ancillary equipment hibernation API

 Ancillary equipment wakeup

Description Used by Optimizer to request that a specific
ancillary equipment goes back into operational
mode.

Endpoint Name /airconditioning/wakeup

Allowed Methods PUT

Body List with the ids of the ancillary equipment
which should enter into operational mode.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 78 of 83

Provides response No

Response Parameters None

Response code 200

Requester Optimizer

Example {
 "air_conditioning":[
 "air_conditioning_1",
 "air_conditioning_2"
]
}

Table 3-37 - Policy Actuator: ancillary equipment wakeup API

 Air conditioning temperature

Description Used by Optimizer to request that a specific air
conditioning equipment works in a specific
temperature.

Endpoint Name /airconditioning/temperature

Allowed Methods PUT

Body List with the ids of the air conditioning
equipments and the temperature to set in each
of them. Temperature should be defined in
Celsius.

Provides response No

Response Parameters None

Response code 200

Requester Optimizer

Example {
 "air_conditioning":[
 {
 "air_cond_sn":"air_conditioning_1",
 "temperature":"20.0"
 },
 {
 "air_cond_sn":"air_conditioning_2",
 "temperature":"17.0"
 }
]
}

Table 3-38 - Policy Actuator: air conditioning API

3.6.2. Deployment and installation

The outcome of the compilation of the core module is a Java Archive (JAR). This file format is OS
independent so it can run on Windows, Linux or MacOS. In this section the instructions that describe
how to deploy Policy Actuator in a Linux machine are provided.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 79 of 83

Java Runtime Environment (JRE) version 8 is the only mandatory library the user should install in its
computer in order to execute the module.

The program requires a configuration file to load some properties from. The implementation contains
a sample configuration file with all required properties called “policyactuator.conf”. Basically,
administrator should configure the base URL of the northbound API, the URL to access the eCOP DB
and the token to be used for authentication and authorization. Once installed, the Policy Actuator
module could be executed by running following command:

$ java -jar policy-actuator-0.0.1.jar |

$PATH_TO_CONFIG_FILE

where PATH_TO_CONFIG_FILE contains either absolute or relative path to configuration file. Second
parameter may differ according to the configuration file location. The execution launches a server
process. To stop the server, simply interrupt the program.

Only in Linux based OS, the process can be simplified making use of the available scripts located in
“target” directory after a fresh build.

$./start.sh $PATH_TO_CONFIG_FILE

…

$./stop.sh

In order to launch it together with an adapter, the adapter must be in the classpath of the Actuator.
After building both the Actuator and the adapter, the following command must be used to launch
them:

$ java -cp policy-actuator-0.0.1.jar:$PATH_TO_BROKER |

net.i2cat.seg.dolfin.ictpes.actuator.entrypoint.EntryPoint

$PATH_TO_CONFIG_FILE

where PATH_TO_CONFIG_FILE contains either absolute or relative path to configuration file, or
PATH_TO_BROKER also absolute or relative path to adapter library file.

3.6.3. Testing the installation

Once Policy Actuator has been deployed, the administrator could guarantee that the module has been
successfully initialized. In order to do that, it is important to know the base address where the server
has been deployed, which is configured in configuration file explained in section 3.6 of this document.

Assuming that the file has been configured to publish the server in localhost on port 9000.
Administrator (and also regular developers) can access using any web browser to the Northbound API
WADL document, which should be published in http://BASE_ADDRESS/policyactuator?_wadl URL. (in
our example, http://localhost:9090/policyactuator?_wadl.

WADL stands for Web Application Description Language and it is a machine-readable XML description
of a REST Web Service. By accessing this URL, administrator should be able to see the Policy Actuator
Northbound API WADL document. Otherwise, it would mean that there was an unexpected exception

http://localhost:9090/policyactuator?_wadl

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 80 of 83

while instantiating the Policy Actuator, so the administrator should take care of the error messages
either displayed in the shell while starting the service or stored in the application log file (by default
/var/log/policyactuator.log).

3.6.4. Other module-specific subsections

3.6.4.1. Online API documentation

As described in chapter 3.6.1, the Northbound API has been built and deployed using Apache CXF
Library. When creating REST Web Services, CXF automatically generates and publish a WADL
document, which is a machine-readable XML description of the API. It is divided in two main sections:

- Grammar: Container for definitions of the format of the exchanged data between client and
server.

- Resources: Container for resources provided by the API. Each resource consists of a relative
path, an HTTP method, a content-type specification and a reference to the exchanged data,
described in grammar section.

This document is very useful to create Web Services clients. There are tools, such as CXF that can
generate a complete Web Service client by translating the WADL document to Java classes (but also
other alternatives such as python). Taking “wadl2java” as reference, provided by CXF, implementing
a JAVA client for a WADL-documented API is as simple as executing following command (in a Linux-
based OS);

$./wadl2java -p $PACKAGE_NAME -impl -compile |

http://$SERVER_ADDRESS/policyactuator_wadl?

where PACKAGE_NAME describes the name of the package where the classes will be created, and
$SERVER_ADDRESS contains base address of the server where Policy Actuator is deployed, including
address, port and context, if any.

3.6.4.2. Log files

The Policy Actuator module logs all its activities in a local file, including errors in the communication
or in the interactions with other DOLFIN components using Log4j library. Log4j is an open source
logging library for printing log output in local and remote destinations. It is fully configurable at
runtime using external configuration files.

The Policy Actuator provides its own configuration file for log4j library, performing customized
configurations on the log file location, the maximum size and file appenders of the logging, the logging
level and the logging messages format.

A set of actions to the log file, such as:

 Policy Actuator is started or stopped.

 Northbound API receives a request to a non-existing resource.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 81 of 83

 Northbound API detects a wrong message format or an unexpected content-type when
Optimizer sends the new plan.

 Policy Actuator successfully logs the actions to be performed by the DCO Brokers into the
eCOP DB.

 eCOP DB is neither available nor reachable.

 eCOP DB launches an unexpected exception when the Policy Actuator sends the actions to be
executed by the DCO Brokers.

 There is no available DCO Broker that can execute the actions.

 The DCO Broker launches an unexpected exception when trying to execute the received
actions.

 The DCO Broker successfully executes the actions, so plan has been execute.

These actions are logged into different levels according to their value or the impact they have in the
system.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 82 of 83

4. Conclusions

This document provided a complete description of the Energy Efficiency Policy Maker and Actuator
implementation and the external interfaces that are exposed by each modules.

For each module the main functions have been defined in relation to the specifications that were
identified during the initial design. Compared to what were already defined during the design phase,
this document contains a number of improvements and revisions of the functionality in addition to
other details regarding the implementation as well as the description of the different logics that are
supported by each module.

In particular, the document describes the operation of the four phases principal taken by the Energy
Efficiency Policy Maker and Actuator:

• Phase 1: DC workload assessment and prediction, performed by the Predictor Engine module.

• Phase 2: Coordination of the intra-DC optimization and management activities, as well as of

handling of various interfaces to internal and external modules for the reception of trigger and

for the activation of new optimization procedures. This coordination role is attributed to the

Policy Maker module which is attached to the Policy Repository to manage operations

conforming to defined energy policies.

• Phase 3: creation of optimization path at the DC level, taking into account DC status

information, SLA conditions, policy constraints, etc. These phase represents the actual

optimization process that is sustained by the Optimizer Engine module.

• Phase 4: interfacing with various brokers DCO (VMs Hypervisor, Appliances, etc.) for the

effective implementation of the optimization path.

Finally, the document also shows the functionalities and interfaces required for inter-DC integration
to support (in cooperation with the developments performed in the WP4 context) the energy
optimization procedures at the level of DOLFIN synergetic-DCs environment.

FP7-ICT-609140 – DOLFIN
D3.4: Energy Efficiency Policy Maker and Actuator component (Implementation)

DOLFIN_D3.4_FF_17_03_2016.docx Page 83 of 83

References

[1] DOLFIN_D3.1_NXW_FF-20150430, PU deliverable, http://www.dolfin-fp7.eu/wp-
content/uploads/2015/07/DOLFIN_D3.1_NXW_FF-20150430.pdf

[2] DOLFIN D3.3 - ICT Performance and Energy Supervisor component (Implementation) – CO
deliverable

[3] DOLFIN D3.2 – Water cooling server module – CO deliverable

[4] DOLFIN D4.3 – SLA Renegotiation Controller component (Implementation) - CO deliverable

[5] DOLFIN D4.4 - Workload and VM Manager component (Implementation) - CO deliverable

[6] https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Bird.pdf

[7] R. Urgaonkar, U. C. Kozat, K. Igarashi and M. J. Neely, "Dynamic resource allocation and power
management in virtualized data centers," Network Operations and Management Symposium
(NOMS), 2010 IEEE, Osaka, 2010, pp. 479-486.

[8] CVXOPT homepage, http://cvxopt.org/

https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Bird.pdf

	List of Contributors
	Amendment History
	Table of Contents
	Figures Summary
	Tables Summary
	Abbreviations
	Executive Summary
	1. Introduction
	2. Energy Efficiency Policy Maker and Actuator
	2.1. Module description
	2.1.1. Policy Maker
	2.1.2. Policy Repository
	2.1.3. Prediction Engine
	2.1.4. Optimizer
	2.1.5. VM Priority Classifier
	2.1.6. Policy Actuator

	3. Implementation description
	3.1. Policy Maker
	3.1.1. Basic concepts
	3.1.2. Policy Maker process loop
	3.1.3. Module Dependencies
	3.1.4. Service endpoints and data model
	3.1.5. Deployment and installation
	3.1.6. Testing the installation

	3.2. Policy Repository
	3.2.1. Basic concepts
	3.2.2. Policy selection workflow
	3.2.3. Module Dependencies
	3.2.1. Service endpoints and data model
	3.2.2. Deployment and installation
	3.2.3. Testing the installation

	3.3. Prediction Engine
	3.3.1. Basic concepts
	3.3.2. Module Dependencies
	3.3.3. Deployment and installation
	3.3.3.1. Configuration of the DB connection
	3.3.3.2. Configuration of the login redirect URL
	3.3.3.3. Configuration of the static files URL
	3.3.3.4. Configuration of the SWAGGER online documentation module
	3.3.3.5. Configure CORS headers
	3.3.3.6. Integration with Apache server and configuration [optional, recommended]
	3.3.3.7. Model Synchronization with the DB
	3.3.3.8. Adding users and groups for using the Prediction Engine
	3.3.3.9. Configuring the default Predictions interval and duration
	3.3.3.10. Configuring the connection to the eCOP DB
	3.3.3.11. Configuring the automated model updating process
	3.3.3.12. Configuring the Interaction with the Policy Maker

	3.3.4. Testing the installation
	3.3.4.1. Testing via command line
	3.3.4.2. Testing via the online documentation system
	3.3.4.3. Testing via the Prediction Engine Dashboard

	3.3.5. Service endpoints and data model
	3.3.5.1. Predictions [/api/predict/]
	3.3.5.2. Validations [/api/validate/]
	3.3.5.3. Authentication and Authorization [/api/tokens/]

	3.4. Optimizer
	3.4.1. Basic concepts
	3.4.2. Module Dependencies
	3.4.3. Deployment and installation
	3.4.3.1. Configuring the CELERY workers
	3.4.3.2. Configuring the interaction with the REDIS server and CELERY workers
	3.4.3.3. Configuring the interaction with the Policy Actuator
	3.4.3.4. Configuring the interaction with the Prediction Engine
	3.4.3.5. Configuring the interaction with the Dolfin Info DB

	3.4.4. Testing the installation
	3.4.4.1. Testing via command line
	3.4.4.2. Testing via the online documentation system
	3.4.4.3. Testing via the Optimizer Dashboard

	3.4.5. Service endpoints and data model
	3.4.5.1. Plans (/api/plans/)
	3.4.5.2. Policies [/api/policies]
	3.4.5.3. Requests [/api/requests/]
	3.4.5.4. Status [/api/status/]
	3.4.5.1. Authentication and Authorization [/api/tokens/]

	3.5. VM Priority Classifier
	3.6. Policy Actuator
	3.6.1. Basic concepts
	3.6.2. Module Dependencies
	3.6.1. Service endpoints and data model
	3.6.2. Deployment and installation
	3.6.3. Testing the installation
	3.6.4. Other module-specific subsections
	3.6.4.1. Online API documentation
	3.6.4.2. Log files

	4. Conclusions
	References

